!+-25.7/8# -25 &%$)' ! Kataoka et al., Nature, 2016 ded uta- able ene ons un- iple uta- 12 gets edi- ving ause ding and d in g. 1, nge- tein ll as the itial NA nda U2 F2)– site o be ning 1)19. cing SR2 th a ome with three additional spliceosome-related genes, including U2AF65, SF1 and SRSF1, in a large series of myeloid neoplasms (N 5 582) using a high-throughput mutation screen of pooled DNA followed by con- firmation/identification of candidate mutations (refs 21 and 22 and Supplementary Methods II). In total, 219 mutationswere identified in 209 out ofthe582 specimens of myeloid neoplasms through validating 313 provisional positive events in the pooled DNA screen (Supplementary Tables 4 and 5). The muta- tions among four genes, U2AF35 (N5 37), SRSF2 (N5 56), ZRSR2 (N 5 23) and SF3B1 (N5 79), explained most of the mutations with much lower mutational rates for SF3A1 (N 5 8), PRPF40B (N5 7), U2AF65 (N 54) and SF1 (N 5 5) (Fig. 2). Mutations of the splicing machinery were highly specific to diseases showing myelodysplastic fea- tures, including MDS either with (84.9%) or without (43.9%) increased ring sideroblasts, chronic myelomonocytic leukaemia (CMML) (54.5%), and therapy-related AML or AML with myelodysplasia-related changes (25.8%), but were rare in de novo AML (6.6%) and myeloproliferative neoplasms (MPN) (9.4%) (Fig. 3a). The mutually exclusive pattern of the mutations in these splicing pathway genes was confirmed in this large case series, suggesting a common impact of these mutations on RNA splicing and the pathogenesis of myelodysplasia (Fig. 3b). The frequencies of mutations showed significant differences across disease types. Surprisingly, SF3B1 mutations were found in the majority of the cases with MDS characterized by increased ring sideroblasts, that is, refractory anaemia withring sideroblasts(RARS)(19/23 or 82.6%)and refractory cytopenia with multilineage dysplasia with $ 15% ring side- roblasts (RCMD-RS) (38/50 or 76%) with much lower mutation fre- quencies in other myeloid neoplasms. RARS and RCMD-RS account P to F65, U2AF35 (21q22.3) Zn UHM RS 240 aa Zn S34F(20) S34Y(5) Q157R(7) Q157P(4) ZRSR2 (Xp22.1) Zn UHM RS Zn N382K* C302R H330R N261Y I202N 483 aa I53T* N327fs G323fs W291X L237fs S40X A96fs R126X E118fs R68sp K257sp F239V E362X E148X E133G C326R PRPF40B (12q13.12) 871 aa SF3A1 Surf UbqL Surf (22q12.2) A57S I141M* Y772C 793 aa E373D T374P K166T M117I M667V RRM RS P95H(31)/L(14)/R(11) SRSF2 (17q25.1) 221 aa Y347X A26V P383L FF FF P15H* P540S D442N M58I* P212L* PR WW WW SF3B1 (2q33.1) 1,304 aa K700E(44) HD K666N(6)/T(3)/E(2)/R(2) H662Q(8)/D(2) E622D(4) Y623C R625L(2)/C(1) N626D K182E G347V D781G U2AF65 (19q13.42) UHM RS M144I R18W 475 aa L187V UHM UHM SF1 KH PR (11q13.1) Zn T474A A508G G372V Y476C T454M HD HD HD HD HD HD HD HD HD HD ARTICLE RESEARCH Yoshida et al., Nature, 2011