Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
jsai2019.pdf
Search
fumihiko takahashi
June 04, 2019
Programming
0
420
jsai2019.pdf
第33回人工知能学会全国大会 のインダストリアルセッションで登壇した時の資料
https://www.ai-gakkai.or.jp/jsai2019/
fumihiko takahashi
June 04, 2019
Tweet
Share
More Decks by fumihiko takahashi
See All by fumihiko takahashi
単一の深層学習モデルによる不確実性の定量化の紹介 ~その予測結果正しいですか?~
ftakahashi
3
880
明日使えるかもしれないLoss Functionsのアイディアと実装
ftakahashi
16
4.4k
時系列予測にTransformerは有効か?
ftakahashi
2
360
SIGSPATIAL2020 参加報告
ftakahashi
3
830
ドライブレコーダーの映像で Scene Text Recognitionする
ftakahashi
0
1.2k
ドライブレコーダーの Scene Text Recognitionにおける Multi-task Learning
ftakahashi
1
3.3k
JapanTaxi R&Dの取り組み事例
ftakahashi
0
91
Attention機構を使った 配車車両未確定状態における タクシー到着時間予測
ftakahashi
1
86
Other Decks in Programming
See All in Programming
バッチ処理を「状態の記録」から「事実の記録」へ
panda728
PRO
0
200
スマホから Youtube Shortsを見られないようにする
lemolatoon
27
34k
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
9.1k
AIのバカさ加減に怒る前にやっておくこと
blueeventhorizon
0
120
Amazon Verified Permissions実践入門 〜Cedar活用とAppSync導入事例/Practical Introduction to Amazon Verified Permissions
fossamagna
2
100
はじめてのDSPy - 言語モデルを『プロンプト』ではなく『プログラミング』するための仕組み
masahiro_nishimi
4
17k
React Nativeならぬ"Vue Native"が実現するかも?_新世代マルチプラットフォーム開発フレームワークのLynxとLynxのVue.js対応を追ってみよう_Vue Lynx
yut0naga1_fa
2
1.9k
AI Agent 時代的開發者生存指南
eddie
4
2.2k
フロントエンド開発のためのブラウザ組み込みAI入門
masashi
7
3.6k
ALL CODE BASE ARE BELONG TO STUDY
uzulla
28
6.8k
Introducing RemoteCompose: break your UI out of the app sandbox.
camaelon
2
100
他言語経験者が Golangci-lint を最初のコーディングメンターにした話 / How Golangci-lint Became My First Coding Mentor: A Story from a Polyglot Programmer
uma31
0
470
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Bash Introduction
62gerente
615
210k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Embracing the Ebb and Flow
colly
88
4.9k
BBQ
matthewcrist
89
9.9k
The Pragmatic Product Professional
lauravandoore
36
7k
Facilitating Awesome Meetings
lara
57
6.6k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
RailsConf 2023
tenderlove
30
1.3k
Transcript
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved +BQBO5BYJͷ"*׆༻ࣄྫ
࣍ੈϞϏϦςΟࣄۀ෦ ϞϏϦςΟݚڀ։ൃάϧʔϓ ߴڮ จ 2019.06.04 第33回⼈⼯知能学会全国⼤会
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved JapanTaxi
交通系スタートアップ
3 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
タクシーの 配⾞プラットフォーム タクシー向け ハードウェアメーカー タクシーデータ ビジネス
4 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
活⽤事例1:タクシーのお迎え時間予測
5 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
タクシー配⾞アプリ「JapanTaxi」 • マップ上で指定したピン位置にタクシーを⼿配 • 乗⾞料⾦の決済もアプリ上で可能 • 全国47都道府県で約7万台 (全国のタクシー⾞両1/3)が対応 • 700万ダウンロード達成
6 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
課題:注⽂キャンセルの問題 Ωϟϯηϧ ंจ ୳ं։࢝ ंܾఆΛ௨ ड ंػձͷଛࣦ Ϣʔβʔ ंγεςϜ υϥΠόʔ Ωϟϯηϧ௨ ܴं։࢝ ंจޙʹΩϟϯηϧ͞ΕΔͱɺυϥΠόʔʹͱͬͯػձଛࣦ
7 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
配⾞時間期待値のギャップ ͘Β͍Ͱ དྷΔ͔ͳʁ ͔͔ΔͳΒ ଞͷަ௨खஈΛ ͓͏ Ωϟϯηϧ ंจ ୳ं։࢝ ౸ண࣌ؒΛܭࢉ ड ंػձͷଛࣦ Ϣʔβʔ ंγεςϜ υϥΠόʔ Ωϟϯηϧ௨ ܴं։࢝
8 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
期待値調整をするために到着予想時間を表⽰ ͘Β͍Ͱ དྷΔ͔ͳʁ ंจ ͠ͳ͍ Ϣʔβʔ ंγεςϜ υϥΠόʔ ࣄલʹ౸ண༧࣌ؒΛ ఏࣔͯ͠ظௐΛ ߦ͏ ͘Β͍Ͱ དྷΔ
9 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
⽬的:事前にお迎え時間を予測 ީิ̍ త • λΫγʔ͕͓ܴ͑ॴʹ౸ண͢Δ·Ͱʹ ͔͔Δ࣌ؒΛ༧ଌ͢Δ • ͓ܴ͑ॴʹ͔͏λΫγʔ ֬ఆ͍ͯ͠ͳ͍ ͓ܴ͑ॴ ީิ ީิ̏ ީิ̐
10 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
Attention機構を使ったお迎え時間予測モデル ंީิͷं྆ͷಛྔ • ग़ൃͷҢܦ • ͓ܴ͑ॴҢܦ • ग़ൃ࣌ͷํɾ • ͓ܴ͑ॴͷํɾઢڑ • ઢڑ͕͍ۙॱ൪ ं྆Ҏ֎ͷڥͷಛྔ • ɺ༵ɺ࣌ؒ • ॕɺٳ "UUFOUJPOػߏ • ػց༁ը૾ೝࣝͳͲͰΘΕΔ ωοτϫʔΫߏ • ೖྗʹԠͯ͢͡Δ͖ಛྔʹ େ͖ͳॏΈ͕༩͞ΕΔ • ࣮ࡍʹं͞ΕΔं྆ͷॏΈ͕େ͖ ͘ͳΔ͜ͱΛظ 到着時間
11 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
予測精度の評価結果 • "UUFOUJPO/FVSBM.PEFM͕࠷."&ͱ5PP'BTUFS3BUF͕খ͍͞ • ຊγεςϜڥͷ߹ɺػցֶशϕʔεͷํ͕ߴ MAE Too Faster Rate Elapsed Time[s] AttentionNeuralModel 156.11 0.2430 0.0360 NeuralModel 164.02 0.3247 0.0385 RouteSearchAverage 166.72 0.2527 0.0729 RouteSearchOneBest 215.70 0.4373 0.0731
12 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
表⽰有無のA/Bテスト • ఏҊϞσϧΛͬͨ༧ଌ౸ண࣌ؒΛදࣔ • දࣔͷ༗ແͰ"#ςετ • ΩϟϯηϧͱจΛൺֱ͠ධՁ • ౸ண࣌ؒ༧ଌΛදࣔͨ͠ํ͕༏ҐʹΩϟ ϯηϧ͕͍ • จେ͖͘ݮΔ͜ͱͳ͔ͬͨ
13 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
活⽤事例2:ドライブレコーダーの動画像分析 ~ガソリンスタンドの料⾦認識~
14 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
1⽇のタクシー動態の様⼦
15 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
センシングカーとしてのタクシー⾞両
16 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
ガソリンスタンド料⾦の⾃動認識
17 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
ガソリンスタンド料⾦の⾃動認識
18 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
Scene Text Recognition Yolo v3 [YOLOv3: An Incremental Improvement, Joseph et al. , 2018] CNN+RNN+CTC [Gated Recurrent Convolution Neural Network for OCR, Jianfeng et al., NIPS2017]
19 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
活⽤事例3:ドライブレコーダーの動画像分析 ~⾃⾞レーン認識~
20 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
⾃⾞レーンの認識 • ⽬的:詳細な位置推定 • ⾞線単位での混雑度合い • ドライビングパターン • 課題:現状の⾃⼰位置推定の精度が悪い • GPSの誤差は数⼗メートル • 道路へマップマッチしてもでわかる位置はせいぜい 道路単位 → ドライブレコーダーの映像を使って⾃⾞レーンを認識 ⾃⾞レーン:2 全⾞線数:3
21 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
22 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
Lane Net を使った⾃⾞レーンの認識 後処理 ⾞線計算 [Towards End-to-End Lane Detection: an Instance Segmentation Approach, Davy et al. , 2018] • ंઢͷ͖͕ਖ਼ͷຊΛΧϯτ͠ɺࣗंҐஔΛܭࢉ
23 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
まとめ
24 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved
JapanTaxiにおけるAI活⽤ • 位置情報や道路周辺環境の課題へのソリューションにAIを活⽤ • 事例1:到着時間予測 • 事例2:ガソリンスタンド料⾦の⾃動認識 • 事例3:⾃⾞レーンの認識 • 今後はセンサーデータや3D点群データなどのマルチデータ活⽤ を⽬指す
〒102-0094 東京都千代⽥区紀尾井町3-12 3-12 Kioicho Chiyoda-ku, Tokyo 102-0094 Japan TEL 03-6265-6265
FAX 03-3239-8115 www.japantaxi.co.jp ⽂章·画像等の内容の無断転載及び複製等の⾏為はご遠慮ください。 Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved ご静聴ありがとうございました