Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SIGSPATIAL2020 参加報告
Search
fumihiko takahashi
December 14, 2020
Research
3
860
SIGSPATIAL2020 参加報告
fumihiko takahashi
December 14, 2020
Tweet
Share
More Decks by fumihiko takahashi
See All by fumihiko takahashi
学習データって増やせばいいんですか?
ftakahashi
3
630
Active Learning の基礎と最近の研究
ftakahashi
0
41
単一の深層学習モデルによる不確実性の定量化の紹介 ~その予測結果正しいですか?~
ftakahashi
3
980
明日使えるかもしれないLoss Functionsのアイディアと実装
ftakahashi
16
4.8k
時系列予測にTransformerは有効か?
ftakahashi
2
500
ドライブレコーダーの映像で Scene Text Recognitionする
ftakahashi
0
1.2k
ドライブレコーダーの Scene Text Recognitionにおける Multi-task Learning
ftakahashi
1
3.3k
JapanTaxi R&Dの取り組み事例
ftakahashi
0
110
jsai2019.pdf
ftakahashi
0
430
Other Decks in Research
See All in Research
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.4k
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
210
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
540
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
120
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
170
2026.01ウェビナー資料
elith
0
130
説明可能な機械学習と数理最適化
kelicht
2
850
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
550
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
140
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
940
Featured
See All Featured
Practical Orchestrator
shlominoach
191
11k
Navigating Weather and Climate Data
rabernat
0
72
Building an army of robots
kneath
306
46k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
400
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
Agile that works and the tools we love
rasmusluckow
331
21k
For a Future-Friendly Web
brad_frost
181
10k
Mobile First: as difficult as doing things right
swwweet
225
10k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
510
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
620
Transcript
2020.12.10 齋藤 智輝 高橋 文彦 株式会社 Mobility Technologies SIG SPATIAL2020
参加レポート
• 名前:高橋文彦 • 略歴 ◦ 2015年4月 ヤフー株式会社 入社 ◦ 2018年8月
JapanTaxi株式会社 入社 ◦ 2020年4月 株式会社MobilityTechnologies • 領域 ◦ データサイエンス、自然言語処理 • 過去の主な仕事 ◦ ECサイトの検索精度改善 ◦ 形態素解析ツールの開発 ◦ MLを使った お迎え時間予測のロジック、APIの開発 ◦ SceneTextRecognitionの研究開発(画像処理) ◦ マネージャー(10人程度組織) ◦ 論文書いたり • 趣味 ◦ ボードゲーム、一蘭
3 04 論文紹介 Part 2 by 高橋
4 Grab-Posisi-L: A Labelled GPS Trajectory Dataset for Map Matching
in Southeast Asia Links: • Paper • Movie Xiaocheng Huang et al. GrabTaxi Holdings, National University of Singapore
5 ▪マップマッチの正解データセットを作成・公開 ▪いくつかのアプリケーションでの応用を紹介 Summary
6 ▪既存のデータセットの課題 ▪ 場所が限定的 ▪ 中国・アメリカが多い ▪ 街の一部のエリアのみを対象 ▪ 規模が小さい
▪ GPSのsampling rateが低い ▪ 付加情報(方向・GPS精度・速度など)がない Background
7 ▪GPSデータ ▪ Grabのドライバー端末 ▪ シンガポール、ジャカルタ ▪ 2019年4月 ▪ GPS精度,
進行方向, 速度 ▪ mode: 車, バイク ▪ 地図はOSMを使用 ▪統計 ▪ 84,000 軌跡 ▪ 1,003,510 km ▪ 30,104 時間 Dataset
8 1.GPSをHMMでマップマッチ 2.JOSMを使って可視化 3.マップマッチ結果を削除挿入変更で校正 Route Annotation
9 ▪本データセットを使ったいくつかの応用を紹介 1.地図推定 2.マップマッチのロジック改善 3.渋滞検知と予測 4.軌跡補完と次の目的地予測 5.GPSデータから移動手段(車 or バイク)を推定する 6.都市計画
Application
10 ▪背景 ▪ GPSの点のマッチ先の道路候補を、半径d以内の道路と決めている ▪ 半径dが小さすぎる場合精度が低下、大きすぎる場合計算量が膨大になるトレードオフ ▪改善案 ▪ GPSの点ごとに、GPS精度(accuracy level)を使って半径dを動的に変更
▪ 半径d = accuracy level * 2 Application – マップマッチのロジック改善
11 Spatio-Temporal Hierarchical Adaptive Dispatching for Ridesharing Systems Links: •
Paper • Movie Chang Liu et al. Shanghai Jiao Tong University, Didi Chuxing
12 ▪相乗りサービスにおいてプーリング間隔を調整して利益を最大化 ▪ 空間をクラスタリングし、クラスタ毎にオンラインで配車間隔を調整するアルゴリズムを提案 ▪実サービスのデータでシミュレーションし、利益が向上することを確認 Summary
13 ▪一般的な相乗りサービスでは、一定の間 隔で注文をプーリングして配車 ▪配車間隔が長いと、 ▪ より利益の高い組み合わせを作れるが ▪ 注文キャンセルが発生し損失 ▪注文数は空間的にも時間的にも不均一に 分布
▪時空間ごとに配車間隔を調整して利益を 最大化 Background
14 1.配車傾向ごとに空間をクラスタリング (Spatial Clustering) 2.クラスター毎に利益が最大化されるタイミングで配車 (Adaptive Interval) Hierarchical Adaptive Framework
15 ▪配車傾向ごとに空間をクラスタリング ▪方法 1. 過去の相乗り配車履歴から共有配車グラフを作成 2. エッジの重みの分散が閾値以下になるように、クラスタ内の重みの合計を最大化する Framework - Spatial
Clustering
16 ▪利益が最大化されるタイミングで配車 ▪ ただし、将来の利益はわからない ▪アルゴリズム ▪ 1/e-ADI algorithm ▪ 秘書問題として解く
▪ 閾値時間までは配車せず、前回配車からこれまでで利 益が最大になったタイミングで配車 ▪ BI-ADI algorithm ▪ 将来の利益を過去の統計データを利用 ▪ 利益が最大になるタイミングで配車 Framework - Adaptive Interval
17 Framework - Adaptive Interval - Algorithm
18 ▪いずれの設定でも提案手法の方が利益が高い Results unit time intervalごとの利益 最大配車間隔ごとの利益
19 Succinct Trit-array Trie for Scalable Trajectory Similarity Search Links:
• Paper • Movie Shunsuke Kanda et al. RIKEN AIP, Kyoto University, Nagoya University
20 ▪LSHとtrieを使って類似経路検索を高速化・省メモリ化 ▪既存手法に比べて12~34倍高速化、メモリを1/10~1/17 Summary
21 Highly Efficient and Scalable Multi-hop Ride-sharing Links: • Paper
• Movie Yixin Xu et al. The University of Melbourne
22 ▪乗り継ぎ方式の相乗りサービスの取り組み ▪ 実現するための2つのアルゴリズムを提案 ▪車両数が中程度あるときに配車失敗数を4割減らした Summary Vehicle-first algorithm Station-first algorithm