Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20221116_MLOps勉強会_クックパッドマートにおける推薦タスクとMLOps
Search
Yusuke Fukasawa
November 16, 2022
Technology
2
1.8k
20221116_MLOps勉強会_クックパッドマートにおける推薦タスクとMLOps
第25回 MLOps 勉強会 でお話した内容です。
https://mlops.connpass.com/event/262549/
Yusuke Fukasawa
November 16, 2022
Tweet
Share
More Decks by Yusuke Fukasawa
See All by Yusuke Fukasawa
対戦におけるポケモンの “意味変化”を追う_リモートポケモン学会
fufufukakaka
0
87
機械学習を用いたポケモン対戦選出予測
fufufukakaka
1
890
Poke_Battle_Logger の紹介: リモポケ学会20230714
fufufukakaka
1
900
Poke_Battle_Loggerの紹介
fufufukakaka
0
310
Cookpad TechConf2022 / Machine-Learning-At-Cookpad-Mart
fufufukakaka
1
3.2k
RedshiftML in Cookpad
fufufukakaka
2
6.6k
Other Decks in Technology
See All in Technology
Accessibility Inspectorを活用した アプリのアクセシビリティ向上方法
hinakko
0
180
2025年の挑戦 コーポレートエンジニアの技術広報/techpr5
nishiuma
0
140
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
190
AWSの生成AIサービス Amazon Bedrock入門!(2025年1月版)
minorun365
PRO
7
470
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
2.4k
The future we create with our own MVV
matsukurou
0
2k
技術に触れたり、顔を出そう
maruto
1
150
KMP with Crashlytics
sansantech
PRO
0
240
Cloudflareで実現する AIエージェント ワークフロー基盤
kmd09
0
290
DMMブックスへのTipKit導入
ttyi2
1
110
Building Scalable Backend Services with Firebase
wisdommatt
0
110
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.5k
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.3k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Into the Great Unknown - MozCon
thekraken
34
1.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
Optimising Largest Contentful Paint
csswizardry
33
3k
Designing for humans not robots
tammielis
250
25k
It's Worth the Effort
3n
183
28k
Bash Introduction
62gerente
610
210k
Transcript
© 2022 Cookpad Inc. クックパッドマートにおける 推薦タスクとMLOps Recommendation and MLOps at
Cookpad-Mart 2022/11/16 Cookpad R&D Department Yusuke Fukasawa
© 2022 Cookpad Inc. 2 Speaker • Yusuke Fukasawa (
twitter @fukkaa1225 ) ◦ 自然言語処理・レコメンド・テーブルデータ • 前職: リクルート ◦ 中途転職サイトでの機械学習システム開発 ◦ サイト横断データの分析、モデル開発 • 現職: クックパッド ◦ クックパッドマートにおけるレコメンド ◦ レシピタイトルから材料を推薦するモデル ◦ 2021年は新卒エンジニア採用担当も兼任 • 趣味はテニス・ゲーム ◦ どちらも試合のデータを記録するのが趣味 ◦ Apex の様子→
© 2022 Cookpad Inc. 3 Cookpad https://speakerdeck.com/cookpadhr/cookpad-introduction
© 2022 Cookpad Inc. 4 Cookpad https://speakerdeck.com/cookpadhr/cookpad-introduction
© 2022 Cookpad Inc. 5 Cookpad https://speakerdeck.com/cookpadhr/cookpad-introduction
© 2022 Cookpad Inc. 6 Cookpad-Mart https://speakerdeck.com/cookpadhr/cookpad-introduction
© 2022 Cookpad Inc. 7 Cookpad R&D Department https://research.cookpad.com 人数は多くないですが、広い分野を担える人材が
揃っています • データ分析・レポーティング • モデルの開発 • プロダクトへの実装 • 関わった施策の効果測定 • 社内ツールの開発・OSS公開 • 論文執筆・研究発表
Recommendation at Cookpad-Mart © 2022 Cookpad Inc. 8
© 2022 Cookpad Inc. 9 Item-to-Item Recommendation • 商品詳細下部に「よく一緒に購入されている商 品」を表示する
© 2022 Cookpad Inc. 10 User-to-Item Recommendation • ユーザごとに、お気に入りタブに推薦商品を表 示する
• アーキテクチャ・モデル共に Item-to-Itemと同 じ
© 2022 Cookpad Inc. 11 Overview
今日お話する MLOps © 2022 Cookpad Inc. 12
© 2022 Cookpad Inc. 13 今日お話する MLOps • 推薦モデルの結果をユーザに届けるまでの過程で必要な実装・オペレーションをすべて MLOps
と捉 えて話します ◦ モデルを開発する際に ▪ 再現性・実験管理はどうしているのか ▪ コードの治安をどのように保っているのか ◦ モデルをデプロイする際に ▪ モデルを定期的に更新しているのか、しているならどうやっているのか ▪ 定期実行に必要なデータはどこにあって、どのように取得しているのか ▪ モデルはどんな環境で動かしているのか ◦ モデルを運用する際に ▪ 監視をしているのか ▪ どんなメトリクスを見ているのか
MLOps: Model Development © 2022 Cookpad Inc. 14
© 2022 Cookpad Inc. 15 MLOps: Model Development • コード管理:
Git(GHE) • コード構成 ◦ Makefile で実行タスクを定義 ◦ Pysen (black・isort・flake8・mypy) ▪ CI: ghe-actions ◦ Poetry • Notebook … EDA のみ、極力避ける • 実験管理 ◦ WandB → MLFlow
© 2022 Cookpad Inc. 16 MLOps: Model Development • RecBole
◦ Number of Models : 70+ ◦ Build by PyTorch ▪ シンプルな実装・比較しやすいメトリクス設計 • 必要な準備: 以下の形式でCSVを用意する(+α) ◦ UserID, ItemID, Interaction TimeStamp
© 2022 Cookpad Inc. 17 MLOps: Model Development • Item-to-Item
Recommend Model: RecVAE ◦ オフライン・オンライン(Interleaving) テストを経て決定 ◦ Item2Vec → RecVAE でコンバージョン数が数倍に増加 A User Item1 Item2 Item3 Day a Item1 Item2 Item1 Item3 Item2 Item3
© 2022 Cookpad Inc. 18 MLOps: Model Development • User-to-Item
Recommend Model: RecVAE ◦ 同じく RecVAE ◦ 現在の実装上、学習データで確認したユーザにしか推薦できない ◦ 直近6ヶ月のデータで学習した後、レコメンドが出ていないユーザへの拡 張処理を実施 注文データ (6ヶ月) RecVAE を学習 レコメンドあり ユーザ群A レコメンドなし ユーザ群B レコメンドあり ユーザ群A ユーザ群B について ユーザ群A の誰に近いのか? を 全購入履歴データを使って計算 (Via Item2Vec) 推薦結果 を出力 近傍ユーザに紐づいて レコメンド結果を集約する (直近の販売実績で更に重み付け)
MLOps: Model Deployment © 2022 Cookpad Inc. 19
© 2022 Cookpad Inc. 20 MLOps: Model Deployment • パイプラインの殆どが社内で開発されたツールを使用
◦ バッチ管理システム... Kuroko2 (OSS) ◦ Redshift からのデータ取得... Queuery (OSS) ◦ バッチ実行環境... Hako(OSS)
© 2022 Cookpad Inc. 21 MLOps: Model Deployment • Kuroko2
◦ web ベースのバッチ管理システム ▪ OSS https://github.com/cookpad/kuroko2 ◦ 主な役割はコンテナの起動・コマンドの実行 ▪ 近年のクックパッドのシステムは殆どコンテナで 動い ている https://speakerdeck.com/eisuke/kuroko2falsejin-kuang-tokutukupatudofalsebatutizhou-rifalsegai-kuang
© 2022 Cookpad Inc. 22 MLOps: Model Deployment • Queuery
◦ Redshift に直接接続することなくデータを取得するための仕 組み(OSS) ▪ Unload → S3 → Application ▪ with Redshift Data API https://techlife.cookpad.com/entry/2021/12/03/093000 https://github.com/bricolages/queuery_client_python
© 2022 Cookpad Inc. 23 MLOps: Model Deployment • Hako
◦ OSS ◦ コンテナを ECS にデプロイするためのツール ◦ jsonnet を書いてデプロイする • Hako-console ◦ 社内ツール ◦ デプロイすると専用のページが生成される ◦ そこからメトリクス監視の Grafana などを確認できる https://github.com/eagletmt/hako/blob/master/examples/hello.jsonnet
MLOps: Monitoring © 2022 Cookpad Inc. 24
© 2022 Cookpad Inc. 25 MLOps: Monitoring • オフラインテスト指標
◦ RecBole に定義されたメトリクスを使用 ▪ NDCG@k ▪ MRR@k ▪ Precision@k ▪ Recall@k ▪ Hits@k ▪ AveragePopularity@k ▪ ItemCoverage@k • オンライン指標 ◦ レコメンド経由でのカート追加数 ◦ Tableau で追跡
© 2022 Cookpad Inc. 26 MLOps: Offline Metrics Monitoring •
社内ツール: Metrics Tracer ◦ S3 にあるメトリクス(json) を取得し可視化 ◦ TODO: サマリーレポート・異常検知・slack 通知
© 2022 Cookpad Inc. 27 MLOps: Data Drift Monitoring(Future Work)
• データドリフトのモニタリング → × ◦ Evidently AI・Whylogs が対応していない • レコメンドの入力データ→ user-item のインタラクションを観測する ことが重要 ◦ ネットワークグラフ的なデータだと言える ◦ そのため、現状は利用できるOSSがない • RecBole が計算してくれる Basic Stats を利用していきたい RecBole が計算している Basic Stats
© 2022 Cookpad Inc. 28
© 2022 Cookpad Inc. 29 https://speakerdeck.com/cookpadhr/cookpad-introduction