$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ファインディLT_ポケモン対戦の定量的分析
Search
Yusuke Fukasawa
February 16, 2025
Programming
0
1.6k
ファインディLT_ポケモン対戦の定量的分析
https://findy.connpass.com/event/343746/
で発表した資料です。
Yusuke Fukasawa
February 16, 2025
Tweet
Share
More Decks by Yusuke Fukasawa
See All by Yusuke Fukasawa
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
1.5k
対戦におけるポケモンの “意味変化”を追う_リモートポケモン学会
fufufukakaka
0
220
機械学習を用いたポケモン対戦選出予測
fufufukakaka
1
1.6k
Poke_Battle_Logger の紹介: リモポケ学会20230714
fufufukakaka
1
1k
Poke_Battle_Loggerの紹介
fufufukakaka
0
390
Cookpad TechConf2022 / Machine-Learning-At-Cookpad-Mart
fufufukakaka
1
3.4k
20221116_MLOps勉強会_クックパッドマートにおける推薦タスクとMLOps
fufufukakaka
2
1.9k
RedshiftML in Cookpad
fufufukakaka
2
8.1k
Other Decks in Programming
See All in Programming
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
160
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
460
Cap'n Webについて
yusukebe
0
150
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
120
認証・認可の基本を学ぼう後編
kouyuume
0
250
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
220
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
130
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
Deno Tunnel を使ってみた話
kamekyame
0
260
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
1.9k
Basic Architectures
denyspoltorak
0
130
Go コードベースの構成と AI コンテキスト定義
andpad
0
140
Featured
See All Featured
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
110
Un-Boring Meetings
codingconduct
0
160
The Cult of Friendly URLs
andyhume
79
6.7k
Mind Mapping
helmedeiros
PRO
0
39
30 Presentation Tips
portentint
PRO
1
180
Context Engineering - Making Every Token Count
addyosmani
9
560
Become a Pro
speakerdeck
PRO
31
5.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
720
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
71
Transcript
趣味の紹介 ポケモン対戦の定量的分析 Yusuke Fukasawa ファインディ様 個人開発自慢LTNight 2025/02
• fufufukakaka • 機械学習エンジニア at コミューン株式会社 ◦ リクルート→クックパッド→ • 得意な領域は自然言語処理と推薦技術
• 朝7時からテニスをするのが趣味(平日2回) 自己紹介
趣味: ポケモン対戦 (シングル・ランクバトル)
趣味: ポケモン対戦 (シングル・ランクバトル) (エンジョイ)
6体同士を見せあって、3体を選んで戦う
ポケモン対戦は 分析しやすいし分析したくなる
- 2人同時手番ゲーム: じゃんけんと構造は同じ - ただ、取りうる手やステータスの配分はかなり無限 - 統計情報が公開されている - 技構成などの遭遇率はわかる -
6体見せあってから3体を出す構造が面白い - マクロとミクロ両方で読み合いが起きる - 長い歴史が続いているゲーム - 分析対象として意義が深い - あわよくば強くなりたい (小声) ポケモン対戦の分析しやすさと魅力
これまでの取り組み
これまでの取り組み
- HDMIキャプチャで対戦動画を YouTube にアップ - YouTube URL を入力すると自動でその対戦から得 られる Stats
を収集するアプリを開発 - 自作のポケモン画像判別機などを作成 - 今も手元で使っています - 本当は何かしらの方法で配布したかった んですが、その手間をかけられなかった 機械学習でポケモン対戦動画 を解析する
None
None
None
None
None
(時間があれば )画面を触ってみるデモ
構成図
- 前述した方法で集めた対戦履歴を用いて選出予測モ デルを作ってみた - 自分と相手の6体を入力として、相手の6体に対して 初手選出・それ以外での選出・選出されない、という Token Classification - ポケモンを単語とみなした
BERT で学習 - 初手はまあまあ当てられるのが良かった - ランダムよりは良い程度ですが... 機械学習を用いたポケモン 対戦選出予測
- 前述した方法で集めた対戦履歴を用いてポケモンを単 語とみなしたベクトルを計算 - その時系列変化を追うことで”意味”変化の大きい・小さ いポケモンを見つけようとした - よく上位構築に採用されるポケモンでも意味変化の大 きい・そうでないの差があって面白かった 対戦におけるポケモンの意味
変化を追う
まとめ • ポケモンの対戦動画を解析するアプリを作って遊んで います • 得たデータを活かして機械学習応用にチャレンジして います • 次の目標は対戦中にアドバイスしてくれる LLM
エー ジェント・自動でポケモン対戦をする強化学習エージェ ントの作成