Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendations AIの事例紹介 / zozotech_gcp_03
Search
fundoshi
June 22, 2020
Programming
0
14k
Recommendations AIの事例紹介 / zozotech_gcp_03
fundoshi
June 22, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
2026年 エンジニアリング自己学習法
yumechi
0
140
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1k
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
980
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
290
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
CSC307 Lecture 01
javiergs
PRO
0
690
ぼくの開発環境2026
yuzneri
0
230
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Building Adaptive Systems
keathley
44
2.9k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Un-Boring Meetings
codingconduct
0
200
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Designing Experiences People Love
moore
144
24k
How to Ace a Technical Interview
jacobian
281
24k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Transcript
ZOZOTOWNにおける Recommendations AIの事例紹介 Copyright © ZOZO Technologies, Inc. 株式会社ZOZOテクノロジーズ 技術開発本部
プラットフォーム部 推薦基盤 チーム 安田 征弘
2 - 自己紹介 - Recommendations AIとは - Recommendations AIの導入 -
ZOZOTOWNにおける設計 - まとめ もくじ
© ZOZO Technologies, Inc. 株式会社ZOZOテクノロジーズ 技術開発本部 プラットフォーム部 推薦基盤チーム 安田 征弘
3 • 推薦、広告、データ集計基盤の担当 • 前職はインターネットテレビの会社でデータエンジニア
© ZOZO Technologies, Inc. 4 Google提供の推薦システム - ECに特化したマネージドサービス - スケーラブル、パーソナライズ、リアルタイム
- 提供機能 - カタログ管理、ユーザーイベント収集 - 推薦方式選択、KPI選択、バリエーション選択 - フィルタリング - モニタリング、エラーレポーティング、アラート - 推薦結果プレビュー、KPIレポーティング - 予測コール数課金 Recommendations AIとは
© ZOZO Technologies, Inc. 5 手順 - Googleアカウントマネージャーに問い合わせ - Recommendations
AIパートナーを紹介してもらう(任意) - 初期設計 with パートナー(任意) - 開発 - リリース Recommendations AIの導入
© ZOZO Technologies, Inc. 6 • 対象枠 ◦ 商品詳細面の「おすすめアイテム」 •
推薦方式 ◦ Others you may like ZOZOTOWNにおける設計 これ
© ZOZO Technologies, Inc. 7 • プロダクトカタログ更新 ZOZOTOWNにおける設計 Recommendations AI
Pub/Sub Dataflow Streaming 商品更新 データ • 追加/更新 ◦ 1000件ずつ OR 1分ごとにimport • 在庫切れ/表示OFF ◦ Near Real-Time patchリクエスト • カタログ登録された商品のみ、ユーザーイベントを取り込める
© ZOZO Technologies, Inc. 8 ZOZOTOWNにおける設計 • ユーザーイベント収集 Tag Manager
Recommendations AI • イベント ◦ 商品詳細面閲覧 ◦ お気に入り追加 ◦ カート追加 ◦ 購入
© ZOZO Technologies, Inc. 9 ZOZOTOWNにおける設計 • モデル生成 ◦ 最適化ゴール、多様性、同確率時の価格ソート有無、ハイパーパラメータチュー
ニングの更新間隔を選択 ◦ 条件 ▪ ユーザーイベントが基準以上に収集されている必要あり ▪ Others you may like • 過去90日間において、商品詳細PVが7日以上 • 商品当たりPVの過去90日間平均が10以上 OR • 過去90日間において、商品詳細PVが60日以上 ◦ モデルのトレーニングに要する期間は 3~7 日
© ZOZO Technologies, Inc. 10 ZOZOTOWNにおける設計 • 予測 ◦ APIキーを発行
◦ プレースメントを発行し、モデルと紐付ける ◦ 対象商品ID、ユーザー情報、フィルタリング条件でリクエスト ◦ 推薦結果の商品ID一覧、推薦トークンを取得 ◦ (サービス上必要な商品情報を付与) • 精度 ◦ 良さそうな印象
© ZOZO Technologies, Inc. 11 • Recommendations AIが色々やってくれる • 近日リリース予定
まとめ
© ZOZO Technologies, Inc. 12 ビジネス要件定義 - 目標達成のためのプロセスやフロー定義をサポート (推薦分野の) ロードマップ設計と推進
- 何が必要となり、どのように改善していくのか - Recommendations AIは検証しておくべきであると判断 - 開発もする 研究所との連携 - 長期的な重要課題は体制化 (宣伝)推薦基盤チームの役割
None