Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendations AIの事例紹介 / zozotech_gcp_03
Search
fundoshi
June 22, 2020
Programming
0
13k
Recommendations AIの事例紹介 / zozotech_gcp_03
fundoshi
June 22, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
Recoilを剥がしている話
kirik
5
6.6k
14 Years of iOS: Lessons and Key Points
seyfoyun
1
770
range over funcの使い道と非同期N+1リゾルバーの夢 / about a range over func
mackee
0
110
Go の GC の不得意な部分を克服したい
taiyow
2
760
開発者とQAの越境で自動テストが増える開発プロセスを実現する
92thunder
1
180
CSC305 Lecture 26
javiergs
PRO
0
140
CSC509 Lecture 14
javiergs
PRO
0
130
今年一番支援させていただいたのは認証系サービスでした
satoshi256kbyte
1
250
【re:Growth 2024】 Aurora DSQL をちゃんと話します!
maroon1st
0
770
LLM Supervised Fine-tuningの理論と実践
datanalyticslabo
3
940
なまけものオバケたち -PHP 8.4 に入った新機能の紹介-
tanakahisateru
1
120
創造的活動から切り拓く新たなキャリア 好きから始めてみる夜勤オペレーターからSREへの転身
yjszk
1
130
Featured
See All Featured
The Language of Interfaces
destraynor
154
24k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Faster Mobile Websites
deanohume
305
30k
Designing Experiences People Love
moore
138
23k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
94
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.3k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Rails Girls Zürich Keynote
gr2m
94
13k
Building Applications with DynamoDB
mza
91
6.1k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
Transcript
ZOZOTOWNにおける Recommendations AIの事例紹介 Copyright © ZOZO Technologies, Inc. 株式会社ZOZOテクノロジーズ 技術開発本部
プラットフォーム部 推薦基盤 チーム 安田 征弘
2 - 自己紹介 - Recommendations AIとは - Recommendations AIの導入 -
ZOZOTOWNにおける設計 - まとめ もくじ
© ZOZO Technologies, Inc. 株式会社ZOZOテクノロジーズ 技術開発本部 プラットフォーム部 推薦基盤チーム 安田 征弘
3 • 推薦、広告、データ集計基盤の担当 • 前職はインターネットテレビの会社でデータエンジニア
© ZOZO Technologies, Inc. 4 Google提供の推薦システム - ECに特化したマネージドサービス - スケーラブル、パーソナライズ、リアルタイム
- 提供機能 - カタログ管理、ユーザーイベント収集 - 推薦方式選択、KPI選択、バリエーション選択 - フィルタリング - モニタリング、エラーレポーティング、アラート - 推薦結果プレビュー、KPIレポーティング - 予測コール数課金 Recommendations AIとは
© ZOZO Technologies, Inc. 5 手順 - Googleアカウントマネージャーに問い合わせ - Recommendations
AIパートナーを紹介してもらう(任意) - 初期設計 with パートナー(任意) - 開発 - リリース Recommendations AIの導入
© ZOZO Technologies, Inc. 6 • 対象枠 ◦ 商品詳細面の「おすすめアイテム」 •
推薦方式 ◦ Others you may like ZOZOTOWNにおける設計 これ
© ZOZO Technologies, Inc. 7 • プロダクトカタログ更新 ZOZOTOWNにおける設計 Recommendations AI
Pub/Sub Dataflow Streaming 商品更新 データ • 追加/更新 ◦ 1000件ずつ OR 1分ごとにimport • 在庫切れ/表示OFF ◦ Near Real-Time patchリクエスト • カタログ登録された商品のみ、ユーザーイベントを取り込める
© ZOZO Technologies, Inc. 8 ZOZOTOWNにおける設計 • ユーザーイベント収集 Tag Manager
Recommendations AI • イベント ◦ 商品詳細面閲覧 ◦ お気に入り追加 ◦ カート追加 ◦ 購入
© ZOZO Technologies, Inc. 9 ZOZOTOWNにおける設計 • モデル生成 ◦ 最適化ゴール、多様性、同確率時の価格ソート有無、ハイパーパラメータチュー
ニングの更新間隔を選択 ◦ 条件 ▪ ユーザーイベントが基準以上に収集されている必要あり ▪ Others you may like • 過去90日間において、商品詳細PVが7日以上 • 商品当たりPVの過去90日間平均が10以上 OR • 過去90日間において、商品詳細PVが60日以上 ◦ モデルのトレーニングに要する期間は 3~7 日
© ZOZO Technologies, Inc. 10 ZOZOTOWNにおける設計 • 予測 ◦ APIキーを発行
◦ プレースメントを発行し、モデルと紐付ける ◦ 対象商品ID、ユーザー情報、フィルタリング条件でリクエスト ◦ 推薦結果の商品ID一覧、推薦トークンを取得 ◦ (サービス上必要な商品情報を付与) • 精度 ◦ 良さそうな印象
© ZOZO Technologies, Inc. 11 • Recommendations AIが色々やってくれる • 近日リリース予定
まとめ
© ZOZO Technologies, Inc. 12 ビジネス要件定義 - 目標達成のためのプロセスやフロー定義をサポート (推薦分野の) ロードマップ設計と推進
- 何が必要となり、どのように改善していくのか - Recommendations AIは検証しておくべきであると判断 - 開発もする 研究所との連携 - 長期的な重要課題は体制化 (宣伝)推薦基盤チームの役割
None