detects feature importance from a filter’s feature ranking… given no more an initial guess at how many features are important • NPFS has some nice theoretical guarantees and has been shown to be quite effective in practice. • We have implemented NPFS for biological data formats D Dataset Map D1 D2 Dn A (Dn, k) A (D2, k) A (D1, k) X:,2 X:,1 X:,n … 2 6 6 6 6 6 4 1 1 0 · · · 1 1 0 1 0 · · · 0 0 1 0 1 · · · 1 1 . . . . . . . . . ... . . . . . . 1 1 1 · · · 1 1 3 7 7 7 7 7 5 # features # of runs Reduce & Inference X i Xj,i ⇣crit ! ! if feature is relevant j X G. Ditzler, R. Polikar, and G. Rosen, “A bootstrap based Neyman-Pearson test for identifying variable importance,” IEEE Transactions on Neural Networks and Learning Systems, 2014, In Press.