Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
JobSet超入門
Search
Hiroyuki Moriya
August 22, 2023
Programming
1
950
JobSet超入門
kubernetes meetup tokyo 60の登壇資料です。
Hiroyuki Moriya
August 22, 2023
Tweet
Share
More Decks by Hiroyuki Moriya
See All by Hiroyuki Moriya
IVRyエンジニア忘年LT大会2024 LLM監視の最前線
gekko0114
1
340
kueueに新しいPriorityClassを足した話
gekko0114
0
720
Other Decks in Programming
See All in Programming
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
250
testingを眺める
matumoto
1
130
Microsoft Orleans, Daprのアクターモデルを使い効率的に開発、デプロイを行うためのSekibanの試行錯誤 / Sekiban: Exploring Efficient Development and Deployment with Microsoft Orleans and Dapr Actor Models
tomohisa
0
240
Design Foundational Data Engineering Observability
sucitw
3
170
Swift Updates - Learn Languages 2025
koher
2
450
MCPとデザインシステムに立脚したデザインと実装の融合
yukukotani
4
1.3k
速いWebフレームワークを作る
yusukebe
5
1.7k
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
300
アプリの "かわいい" を支えるアニメーションツールRiveについて
uetyo
0
200
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
120
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
18
9.9k
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
380
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
187
54k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
A designer walks into a library…
pauljervisheath
207
24k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
The Language of Interfaces
destraynor
161
25k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Transcript
JobSet超入門 Hiroyuki Moriya
Self introduction ▶ GitHub: @Gekko0114 ▶ Software Engineer ▶ 趣味でk8s関連のOSSの調査
▶ 技術系のイベント初登壇です
今日話すこと ▶ kubernetes-sigs/JobSetがどんなものかを簡単に紹介します ▶ 開発途上のOSS(version 0.2.0)で日本語資料がほとんどありません ▶ 今回の内容は未実装の機能も含みます ▶ 今後の方針によって機能が変更される可能性もあります
JobSet開発の背景 ▶ k8sは、AI/ML関連のJob向けの機能開発に力を入れてこなかった ▶ PodとDeployment/StatefulSetのような存在がJobには無い ▶ AI/MLをk8s上で管理するOSSが開発されてきた (kubeflowなど) ▶ kubeflowでは、フレームワークで共通の機能が、重複実装されている
JobSetで何をしたい? ▶ 複数のJobを管理できるCRD ▶ フレームワーク間で共通の機能を、重複せずに実装したい ▶ 個別のフレームワークに必要な機能も備えたい
JobSetで何をしたい?(詳しく) ▶ 複数templateの同時実行:ML分散学習はDriverとworkerが必要 ▶ network設定:Job間のnetworkを良い感じにしたい ▶ Scaling:HPAが動作してほしい ▶ Startup sequence:ジョブの実行順序も定義したい
▶ フレームワーク(PyTorch, tensorflow etc)毎に必要な設定を管理
ジョブの実行順序の制御とは? ▶ フレームワークによって、起動したいPodの順番が決まっている ▶ 例1: RayやSparkだと、Driverを最初に起動しないといけない ▶ 例2: MPIだと、Workerを最初に起動しないといけない
フレームワーク毎に必要な設定とは? ▶ kubeflowではtraining-operator等がうまくやってくれている ▶ 例:tensorflowのTF_CONFIG, PyTorchのinit_process_group
JobSetでこれらの問題を解決しよう! ▶ kubeflowがうまくやってる点(フレームワーク毎の対応)もなんとかする
JobSetでカバーする機能 ▶ 複数templateの同時実行が可能 ▶ network設定:headless serviceが良い感じにしてくれる ▶ Scaling:HPAがちゃんと動く ▶ Startup
sequence:ジョブの実行順を定義可能予定 ▶ JobSetConfig:フレームワーク毎に設定ファイルを用意する予定 など
Yaml ▶ replicatedJobsにJob を書く
まとめ ▶ JobSetの開発が進めば、ML/AI workflowが簡易化されるかも ▶ 開発途上なのでcontribution chance ▶ コメントあればお願いします!
ご清聴ありがとうございました! ▶ 参考資料 ▶ JobSetAPI https://docs.google.com/document/d/1WqjSeFOrMneGS1wlC5cmhtHrpF2rErh-EIfkVN7rBrA/edit ▶ Repo https://github.com/kubernetes-sigs/jobset
参考:TFJob ▶ tf.distributeによる分散学習をサポート(参考) ▶ TF_CONFIG (chief, worker, ps, evaluator)の設定など
参考:PyTorchJob ▶ DataParallel, DistributedDataParallel, DistributedElastic ▶ 各分散処理向けの実装が必要 ▶ 例1: DistributedDataParallel実行のためのinit_process_group
▶ 例2: DistributedElasticのためのrendezvous