$30 off During Our Annual Pro Sale. View Details »

Lambda Calc Talk (ConsenSys Condensed Version)

Lambda Calc Talk (ConsenSys Condensed Version)

Truncated version of my LC talk, delivered for a remote talk. For the longer original version, see https://github.com/glebec/lambda-talk. For the follow-up code examples repo including the Z-combinator, see https://github.com/glebec/lambda-talk-practical.

Gabriel Lebec

July 11, 2019
Tweet

More Decks by Gabriel Lebec

Other Decks in Programming

Transcript

  1. as.js
    A FL O C K of FU N C T I O N S
    COMBINATORS, LAMBDA CALCULUS,
    & CHURCH ENCODINGS in JAVASCRIPT
    ConsenSys Crash Course

    Edition™

    View Slide

  2. glebec
    glebec
    glebec
    glebec
    g_lebec

    Gabriel Lebec
    github.com/glebec/lambda-talk

    View Slide

  3. a.a
    IDENTITY

    View Slide

  4. λ
    JS I = a => a
    I := a.a

    View Slide

  5. λ
    JS I(x) === ?
    I x = ?
    I := a.a
    I = a => a

    View Slide

  6. λ
    JS I(x) === x
    I x = x
    I := a.a
    I = a => a

    View Slide

  7. λ
    JS I(I) === ?
    I I = ?
    I := a.a
    I = a => a

    View Slide

  8. λ
    JS I(I) === I
    I I = I
    I := a.a
    I = a => a

    View Slide

  9. id 5 == 5

    View Slide

  10. ?

    View Slide

  11. a.a
    FUNCTION
    SIGNIFIER

    View Slide

  12. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE

    View Slide

  13. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE
    RETURN
    EXPRESSION

    View Slide

  14. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE
    RETURN
    EXPRESSION
    LAMBDA ABSTRACTION

    View Slide

  15. ConsenSys Crash Course

    Edition™

    View Slide

  16. -CALCULUS SYNTAX
    expression ::= variable identifier
    | expression expression application
    | variable . expression abstraction
    | ( expression ) grouping

    View Slide

  17. λ JS

    View Slide

  18. VARIABLES
    x x
    (a) (a)

    View Slide

  19. f a f(a)
    f a b f(a)(b)
    (f a) b (f(a))(b)
    f (a b) f(a(b))
    APPLICATIONS

    View Slide

  20. a.b a => b
    a.b x a => b(x)
    a.(b x) a => (b(x))
    (a.b) x (a => b)(x)
    a.b.a a => b => a
    a.(b.a) a => (b => a)
    ABSTRACTIONS

    View Slide

  21. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  22. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  23. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  24. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  25. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  26. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  27. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  28. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  29. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  30. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  31. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  32. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  33. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  34. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  35. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  36. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  37. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  38. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  39. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION

    View Slide

  40. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION

    View Slide

  41. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION
    β-NORMAL FORM

    View Slide

  42. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION*
    β-NORMAL FORM
    *not covered: evaluation order, variable collision avoidance

    View Slide

  43. f.ff
    MOCKINGBIRD

    View Slide

  44. λ
    JS M = f => f(f)
    M := f.ff

    View Slide

  45. λ
    JS M(I) === ?
    M I = ?
    M := f.ff

    View Slide

  46. λ
    JS M(I) === I(I)
    M I = I I
    M := f.ff

    View Slide

  47. λ
    JS M(I) === I(I)
    && I(I) === ?
    M I = I I = ?
    M := f.ff

    View Slide

  48. λ
    JS M(I) === I(I)
    && I(I) === I
    M I = I I = I
    M := f.ff

    View Slide

  49. λ
    JS M(M) === ?
    M M = ?
    M := f.ff

    View Slide

  50. λ
    JS M(M) === M(M)
    M M = M M
    M := f.ff

    View Slide

  51. λ
    JS M(M) === M(M) === ?
    M M = M M = ?
    M := f.ff

    View Slide

  52. λ
    JS M(M) === M(M) ===
    M M = M M = M M = …
    // stack overflow
    M := f.ff
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M

    View Slide

  53. λ
    JS
    M M = M M = M M = Ω
    // stack overflow
    M := f.ff
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M

    View Slide

  54. a.b.c.b a => b => c => b
    abc.b a => b => c => b
    (a, b, c) => b
    =
    ABSTRACTIONS, again

    View Slide

  55. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  56. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  57. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  58. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  59. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  60. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  61. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  62. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  63. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  64. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  65. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  66. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  67. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  68. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  69. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  70. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  71. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  72. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  73. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again

    View Slide

  74. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again

    View Slide

  75. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again
    β-NORMAL FORM

    View Slide

  76. ab.a
    KESTREL

    View Slide

  77. λ
    JS K = a => b => a
    K := ab.a
    = a.b.a

    View Slide

  78. λ
    JS K(M)(I) === ?
    K M I = ?
    K := ab.a
    K = a => b => a

    View Slide

  79. λ
    JS K(M)(I) === M
    K M I = M
    K := ab.a
    K = a => b => a

    View Slide

  80. λ
    JS K(M)(I) === M
    K(I)(M) === ?
    K M I = M
    K I M = ?
    K := ab.a
    K = a => b => a

    View Slide

  81. λ
    JS K(M)(I) === M
    K(I)(M) === I
    K M I = M
    K I M = I
    K := ab.a
    K = a => b => a

    View Slide

  82. const 7 2 == 7

    View Slide

  83. λ
    JS K(I)(x) === ?
    K I x = ?
    K := ab.a
    K = a => b => a

    View Slide

  84. λ
    JS K(I)(x) === I
    K I x = I
    K := ab.a
    K = a => b => a

    View Slide

  85. λ
    JS K(I)(x)(y) === I(y)
    K I x y = I y
    K := ab.a
    K = a => b => a

    View Slide

  86. λ
    JS K(I)(x)(y) === I(y)
    && I(y) === ?
    K I x y = I y = ?
    K := ab.a
    K = a => b => a

    View Slide

  87. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  88. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  89. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  90. ab.b
    KITE

    View Slide

  91. λ
    JS KI = a => b => b
    KI = K(I)
    KI := ab.b
    = K I

    View Slide

  92. λ
    JS KI(M)(K) === ?
    KI M K = ?
    KI := ab.b
    KI = a => b => b

    View Slide

  93. λ
    JS KI(M)(K) === K
    KI M K = K
    KI := ab.b
    KI = a => b => b

    View Slide

  94. λ
    JS KI(M)(K) === K
    KI(K)(M) === ?
    KI M K = K
    KI K M = ?
    KI := ab.b
    KI = a => b => b

    View Slide

  95. λ
    JS KI(M)(K) === K
    KI(K)(M) === M
    KI M K = K
    KI K M = M
    KI := ab.b
    KI = a => b => b

    View Slide

  96. ?

    View Slide

  97. SCHÖNFINKEL CURRY SMULLYAN
    Identitätsfunktion
    Konstante Funktion
    verSchmelzungsfunktion
    verTauschungsfunktion
    Zusammensetzungsf.
    I

    K

    S

    C

    B
    Idiot

    Kestrel

    Starling

    Cardinal

    Bluebird
    Ibis?

    View Slide

  98. View Slide

  99. ?

    View Slide

  100. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    TH E FO R M A L I Z AT I O N O F
    MAT H E M AT I C A L LO G I C

    View Slide

  101. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    CO M B I N AT O RY LO G I C
    CO M B I N AT O R S · CU R RY I N G
    1920

    View Slide

  102. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    CO M B I N AT O RY LO G I C (AG A I N )
    CO M B I N AT O R S · M A N Y C O N T R I B U T I O N S
    1926

    View Slide

  103. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    D I S C OV E R S SC H Ö N F I N K E L
    “This paper anticipates much of what I have done.”
    1927

    View Slide

  104. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    IN C O M P L E T E N E S S TH E O R E M S
    1931
    GE N E R A L RE C U R S I O N TH E O RY

    View Slide

  105. RÓZSA PÉTER (POLITZER)
    RE C U R S I V E FU N C T I O N TH E O RY
    1932
    RE K U R S I V E FU N K T I O N E N
    ConsenSys Crash Course

    Edition™

    View Slide

  106. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    -CA L C U L U S
    AN EF F E C T I V E MO D E L O F CO M P U TAT I O N
    1932

    View Slide

  107. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    I N C O N S I S T E N C Y O F S P E C I A L I Z E D
    1931–1936
    C O N S I S T E N C Y O F P U R E

    View Slide

  108. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    SO LV E S T H E DE C I S I O N PRO B L E M
    V I A T H E -CA L C U L U S
    1936

    View Slide

  109. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    SO LV E S T H E DE C I S I O N PRO B L E M
    1936
    V I A T H E TU R I N G MAC H I N E

    View Slide

  110. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    ES TA B L I S H E S T H E CH U RC H -TU R I N G TH E S I S
    1936
    -CA L C U L U S 㱻 TU R I N G MAC H I N E

    View Slide

  111. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    O B TA I N S PH D U N D E R CH U RC H
    1936–1938
    PU B L I S H E S 1S T FI X E D -PO I N T CO M B I N AT O R

    View Slide

  112. COMBINATORS
    functions with no free variables
    b.b combinator
    b.a not a combinator
    ab.a combinator
    a.ab not a combinator
    abc.c(e.b) combinator

    View Slide

  113. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  114. CARDINAL
    fab.fba

    View Slide

  115. λ
    JS C = f => a => b => f(b)(a)
    C := fab.fba

    View Slide

  116. λ
    JS C(K)(I)(M) === ?
    C K I M = ?
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  117. λ
    JS C(K)(I)(M) === M
    C K I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  118. λ
    JS C(K)(I)(M) === M
    C K I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  119. λ
    JS KI(I)(M) === M
    KI I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  120. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI = CK second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  121. flip const 1 8 == 8

    View Slide

  122. so?

    View Slide

  123. -CALCULUS
    abstract symbol rewriting
    functional computation
    TURING MACHINE
    hypothetical device
    state-based computation
    (f.ff)a.a
    purely functional programming languages
    higher-level machine-centric languages
    assembly languages
    machine code
    higher-level abstract stateful languages
    real computers

    View Slide

  124. TM

    View Slide

  125. EVERYTHING
    CAN BE
    FUNCTIONS
    ConsenSys Crash Course

    Edition™: "but note,

    not everything IS or

    SHOULD be functions"

    View Slide

  126. !x == y || (a && z)

    View Slide

  127. !x == y || (a && z)

    View Slide

  128. how‽

    View Slide

  129. λ
    JS const result = bool ? exp1 : exp2

    View Slide

  130. λ
    JS const result = bool ? exp1 : exp2
    // true

    View Slide

  131. λ
    JS const result = bool ? exp1 : exp2
    // false

    View Slide

  132. λ
    JS const result = bool ? exp1 : exp2
    result := ?

    View Slide

  133. λ
    JS const result = bool ? exp1 : exp2
    result := bool ? exp1 : exp2

    View Slide

  134. λ
    JS const result = bool ? exp1 : exp2
    result := bool ? exp1 : exp2

    View Slide

  135. λ
    JS const result = bool ? exp1 : exp2
    result := bool exp1 exp2

    View Slide

  136. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2

    View Slide

  137. λ
    JS
    result := func exp1 exp2
    const result = bool (exp1) (exp2)
    // true

    View Slide

  138. λ
    JS
    result := func exp1 exp2
    const result = bool (exp1) (exp2)
    // false

    View Slide

  139. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2
    TRUE
    FALSE

    View Slide

  140. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2
    K
    KI

    View Slide

  141. λ
    JS const T = K
    const F = KI
    TRUE := K
    FALSE := KI = C K
    CHURCH ENCODINGS: BOOLEANS

    View Slide

  142. λ
    JS p

    View Slide

  143. λ
    JS !p

    View Slide

  144. λ
    JS !p
    ! p

    View Slide

  145. λ
    JS not(p)
    NOT p

    View Slide

  146. λ
    JS not(p)
    NOT p
    F
    T
    F
    T

    View Slide

  147. λ
    JS C(K) (chirp)(tweet) === tweet
    C(KI)(chirp)(tweet) === chirp
    C K = KI
    C (KI) = K

    View Slide

  148. λ
    JS C(T) (chirp)(tweet) === tweet
    C(F) (chirp)(tweet) === chirp
    C T = F
    C F = T

    View Slide

  149. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  150. λ
    JS const and = ? => ?
    AND := ?.?

    View Slide

  151. λ
    JS const and = p => q => ?
    AND := pq.?

    View Slide

  152. λ
    JS const and = p => q => p(?)(¿)
    AND := pq.p?¿

    View Slide

  153. λ
    JS const and = p => q => p(?)(¿)
    AND := pq.p?¿
    F
    F

    View Slide

  154. λ
    JS const and = p => q => p(?)(F)
    AND := pq.p?F

    View Slide

  155. λ
    JS const and = p => q => p(?)(F)
    AND := pq.p?F
    T
    T

    View Slide

  156. λ
    JS const and = p => q => p(q)(F)
    AND := pq.pqF

    View Slide

  157. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  158. (ONE OF) DE MORGAN'S LAWS
    ¬(P ∧ Q) = (¬P) ∨ (¬Q)
    BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    !(p && q) === (!p) || (!q)

    View Slide

  159. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  160. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  161. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  162. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  163. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  164. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  165. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  166. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))

    ((fab.fba) ((xy.xyx) p q))

    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  167. QUESTION
    how many combinators
    are needed to form a basis?

    View Slide

  168. QUESTION
    how many combinators

    are needed to form a basis?
    20? 10? 5?

    View Slide

  169. STARLING · KESTREL
    S := abc.ac(bc)
    K := ab.a

    View Slide

  170. THE
    SK
    COMBINATOR
    CALCULUS

    View Slide

  171. I = ?

    View Slide

  172. I = S K K

    View Slide

  173. I = S K K
    V = ?

    View Slide

  174. I = S K K
    V = (S(K((S((S(K((

    S(KS))K)))S))(KK))))
    ((S(K(S((SK)K))))K)

    View Slide

  175. IOTA
    ι := f.(f abc.ac(bc))ab.a
    I := ιι
    K := ι(ι(ιι))
    S := ι(ι(ι(ιι)))

    View Slide

  176. seriously though,
    why?

    View Slide

  177. View Slide

  178. View Slide

  179. View Slide

  180. View Slide

  181. f.(x.f(xx))(x.f(xx))
    THE Y FIXED-POINT COMBINATOR

    View Slide

  182. f.(x.f(v.xxv))(x.f(v.xxv))
    THE Z FIXED-POINT COMBINATOR

    View Slide

  183. pseudo-recursive
    functorial to invoke
    THE Z FIXED-POINT COMBINATOR
    Z = f => M(x => f(v => x(x)(v)))
    “engine” which
    invents recursion
    ConsenSys Crash Course

    Edition™

    View Slide

  184. “functorial?”
    “pseudorecursive?”

    View Slide

  185. RECURSIVE
    fact =

    n =>

    (n > 0)
    ? n * (n - 1)
    : 1
    fact

    View Slide


  186. (n > 0)
    ? n * (n - 1)
    : 1
    “PSEUDO-RECURSIVE”
    pseudoFact =

    n =>
    f
    f =>
    replaced recursive
    call with parameter

    View Slide

  187. RECURSIVE VS.PSUEDO-RECURSIVE
    rec = a => ___ rec(x)


    pseudoRec = step => a => ___ step(x)
    rec = Z(pseudoRec)
    rec(input) -> result

    View Slide

  188. so, what is the
    use case?

    View Slide

  189. RECURSION
    DECORATORS
    LOGGING

    LIMITING
    DEBUGGING
    MEMOIZING

    View Slide

  190. DEMO

    View Slide


  191. ADDENDUM

    View Slide

  192. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a true, first, const const
    KI Kite ab.b = KI = CK false, second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°←1° composition (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id
    B1
    Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

    View Slide

  193. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K = C(KI) encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  194. CHURCH ENCODINGS: NUMERALS
    Sym. Name -Calculus Use
    N0 ZERO fa.a = F apply f no times to a
    N1 ONCE fa.f a = I* apply f once to a
    N2 TWICE fa.f (f a) apply 2-fold f to a
    N3 THRICE fa.f (f (f a)) apply 3-fold f to a
    N4 FOURFOLD fa.f (f (f (f a))) apply 4-fold f to a
    N5 FIVEFOLD fa.f (f (f (f (f a))))) apply 5-fold f to a

    View Slide

  195. CHURCH ARITHMETIC
    Name -Calculus Use
    SUCC nf.B f (nf) = nfa.f(nfa) successor of n
    ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k
    MULT nkf.n(kf) = B multiplication of n and k
    POW nk.kn = Th
    raise n to the power of k
    PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n
    PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier)
    SUB nk.k PRED n subtract k from n

    View Slide

  196. CHURCH ARITHMETIC: BOOLEAN OPS
    Name -Calculus Use
    IS0 n.n (K F) T test if n = 0
    LEQ nk.IS0 (SUB n k) test if n <= k
    EQ nk.AND (LEQ n k) (LEQ k n) test if n = k
    GT nk.B1
    NOT LEQ test if n > k

    View Slide

  197. CHURCH PAIRS
    Sym. Name -Calculus Use
    PAIR abf.fab = V pair two arguments
    FST p.pK extract first of pair
    SND p.p(KI) extract second of pair
    Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd
    SET1ST cp.PAIR c (SND p) set first, immutably
    SET2ND cp.PAIR (FST p) c set second, immutably

    View Slide

  198. ADDITIONAL RESOURCES
    Combinator Birds · Rathman · http://bit.ly/2iudab9
    To Mock a Mockingbird · Smullyan · http://amzn.to/2g9AlXl
    To Dissect a Mockingbird · Keenan · http://dkeenan.com/Lambda
    .:.

    A Tutorial Introduction to the Lambda Calculus · Rojas · http://bit.ly/1agRC97
    Lambda Calculus · Wikipedia · http://bit.ly/1TsPkGn
    The Lambda Calculus · Stanford · http://stanford.io/2vtg8hp
    .:.

    History of Lambda-calculus and Combinatory Logic
    Cardone, Hindley · http://bit.ly/2wCxv4k
    .:.

    An Introduction to Functional Programming

    through Lambda Calculus · Michaelson · http://amzn.to/2vtts56

    View Slide