Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Lambda Calc Talk (FrontSide Version)

Lambda Calc Talk (FrontSide Version)

Slightly modified / updated version of my LC talk, delivered remotely for the FrontSide conference in Paris, France. For the original version, see https://github.com/glebec/lambda-talk. For a follow-up code examples repo including the Z-combinator, see https://github.com/glebec/lambda-talk-practical.

Gabriel Lebec

October 15, 2020
Tweet

More Decks by Gabriel Lebec

Other Decks in Programming

Transcript

  1. as.js
    A FL O C K of FU N C T I O N S
    COMBINATORS, LAMBDA CALCULUS,
    & CHURCH ENCODINGS in JAVASCRIPT

    View Slide

  2. glebec
    glebec
    glebec
    glebec
    g_lebec

    Gabriel Lebec
    github.com/glebec/lambda-talk
    formerly @
    currently*@
    presenting @
    *Views and opinions in this presentation
    are my own and do not represent
    those of my employer.

    View Slide

  3. a.a
    IDENTITY

    View Slide

  4. λ
    JS I = a => a
    I := a.a

    View Slide

  5. λ
    JS I = a => a
    I := a.a

    View Slide

  6. λ
    JS I(x) === ?
    I x = ?
    I := a.a
    I = a => a

    View Slide

  7. λ
    JS I(x) === x
    I x = x
    I := a.a
    I = a => a

    View Slide

  8. λ
    JS I(I) === ?
    I I = ?
    I := a.a
    I = a => a

    View Slide

  9. λ
    JS I(I) === I
    I I = I
    I := a.a
    I = a => a

    View Slide

  10. id 5 == 5

    View Slide

  11. ?

    View Slide

  12. a.a

    View Slide

  13. a.a
    FUNCTION
    SIGNIFIER

    View Slide

  14. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE

    View Slide

  15. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE
    RETURN
    EXPRESSION

    View Slide

  16. a.a
    FUNCTION
    SIGNIFIER
    PARAMETER VARIABLE
    RETURN
    EXPRESSION
    LAMBDA ABSTRACTION

    View Slide

  17. View Slide

  18. -CALCULUS SYNTAX
    expression ::= variable identifier
    | expression expression application
    | variable . expression abstraction
    | ( expression ) grouping

    View Slide

  19. λ JS

    View Slide

  20. VARIABLES
    x x
    (a) (a)

    View Slide

  21. f a f(a)
    f a b f(a)(b)
    (f a) b (f(a))(b)
    f (a b) f(a(b))
    APPLICATIONS

    View Slide

  22. a.b a => b
    a.b x a => b(x)
    a.(b x) a => (b(x))
    (a.b) x (a => b)(x)
    a.b.a a => b => a
    a.(b.a) a => (b => a)
    ABSTRACTIONS

    View Slide

  23. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  24. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  25. ((a.a)b.c.b)(x)e.f
    β-REDUCTION

    View Slide

  26. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  27. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  28. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  29. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    β-REDUCTION

    View Slide

  30. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  31. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  32. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  33. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION

    View Slide

  34. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION

    View Slide

  35. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION

    View Slide

  36. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION
    β-NORMAL FORM

    View Slide

  37. ((a.a)b.c.b)(x)e.f
    = (b.c.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION*
    β-NORMAL FORM
    *not covered: evaluation order, variable collision avoidance

    View Slide

  38. f.ff
    MOCKINGBIRD

    View Slide

  39. λ
    JS M = f => f(f)
    M := f.ff

    View Slide

  40. λ
    JS M = f => f(f)
    M := f.ff

    View Slide

  41. λ
    JS M = f => f(f)
    M := f.ff

    View Slide

  42. λ
    JS M = f => f(f)
    M := f.ff

    View Slide

  43. λ
    JS M(I) === ?
    M I = ?
    M := f.ff

    View Slide

  44. λ
    JS M(I) === I(I)
    M I = I I
    M := f.ff

    View Slide

  45. λ
    JS M(I) === I(I)
    && I(I) === ?
    M I = I I = ?
    M := f.ff

    View Slide

  46. λ
    JS M(I) === I(I)
    && I(I) === I
    M I = I I = I
    M := f.ff

    View Slide

  47. λ
    JS M(M) === ?
    M M = ?
    M := f.ff

    View Slide

  48. λ
    JS M(M) === M(M)
    M M = M M
    M := f.ff

    View Slide

  49. λ
    JS M(M) === M(M) === ?
    M M = M M = ?
    M := f.ff

    View Slide

  50. λ
    JS M(M) === M(M) ===
    M M = M M = M M = …
    // stack overflow
    M := f.ff
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M

    View Slide

  51. λ
    JS
    M M = M M = M M = Ω
    // stack overflow
    M := f.ff
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M
    M(M) === M(M) === M(M) === M(M) === M

    View Slide

  52. a.b.c.b a => b => c => b
    abc.b a => b => c => b
    (a, b, c) => b
    =
    ABSTRACTIONS, again

    View Slide

  53. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  54. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  55. ((a.a)bc.b)(x)e.f
    β-REDUCTION, again

    View Slide

  56. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  57. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  58. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  59. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    β-REDUCTION, again

    View Slide

  60. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  61. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  62. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  63. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    β-REDUCTION, again

    View Slide

  64. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again

    View Slide

  65. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again

    View Slide

  66. ((a.a)bc.b)(x)e.f
    = (bc.b) (x)e.f
    = (c.x) e.f
    = x
    β-REDUCTION, again
    β-NORMAL FORM

    View Slide

  67. ab.a
    KESTREL

    View Slide

  68. λ
    JS K = a => b => a
    K := ab.a
    = a.b.a

    View Slide

  69. λ
    JS K(M)(I) === ?
    K M I = ?
    K := ab.a
    K = a => b => a

    View Slide

  70. λ
    JS K(M)(I) === M
    K M I = M
    K := ab.a
    K = a => b => a

    View Slide

  71. λ
    JS K(M)(I) === M
    K(I)(M) === ?
    K M I = M
    K I M = ?
    K := ab.a
    K = a => b => a

    View Slide

  72. λ
    JS K(M)(I) === M
    K(I)(M) === I
    K M I = M
    K I M = I
    K := ab.a
    K = a => b => a

    View Slide

  73. const 7 2 == 7

    View Slide

  74. λ
    JS K(I)(x) === ?
    K I x = ?
    K := ab.a
    K = a => b => a

    View Slide

  75. λ
    JS K(I)(x) === I
    K I x = I
    K := ab.a
    K = a => b => a

    View Slide

  76. λ
    JS K(I)(x)(y) === I(y)
    K I x y = I y
    K := ab.a
    K = a => b => a

    View Slide

  77. λ
    JS K(I)(x)(y) === I(y)
    && I(y) === ?
    K I x y = I y = ?
    K := ab.a
    K = a => b => a

    View Slide

  78. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  79. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  80. λ
    JS
    K I x y = I y = y
    K := ab.a
    K = a => b => a
    K(I)(x)(y) === I(y)
    && I(y) === y

    View Slide

  81. ab.b
    KITE

    View Slide

  82. λ
    JS KI = a => b => b
    KI = K(I)
    KI := ab.b
    = K I

    View Slide

  83. λ
    JS KI(M)(K) === ?
    KI M K = ?
    KI := ab.b
    KI = a => b => b

    View Slide

  84. λ
    JS KI(M)(K) === K
    KI M K = K
    KI := ab.b
    KI = a => b => b

    View Slide

  85. λ
    JS KI(M)(K) === K
    KI(K)(M) === ?
    KI M K = K
    KI K M = ?
    KI := ab.b
    KI = a => b => b

    View Slide

  86. λ
    JS KI(M)(K) === K
    KI(K)(M) === M
    KI M K = K
    KI K M = M
    KI := ab.b
    KI = a => b => b

    View Slide

  87. λ
    JS KI(M)(K) === K
    KI(K)(M) === M
    KI M K = K
    KI K M = M
    KI := ab.b
    KI = a => b => b

    View Slide

  88. ?

    View Slide

  89. SCHÖNFINKEL CURRY SMULLYAN
    Identitätsfunktion
    Konstante Funktion
    verSchmelzungsfunktion
    verTauschungsfunktion
    Zusammensetzungsf.
    I
    K
    S
    C
    B
    Idiot
    Kestrel
    Starling
    Cardinal
    Bluebird
    Ibis?

    View Slide

  90. View Slide

  91. ?

    View Slide

  92. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    TH E FO R M A L I Z AT I O N O F
    MAT H E M AT I C A L LO G I C
    PÉTER

    View Slide

  93. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    FO R M A L NO TAT I O N FO R FU N C T I O N S
    1889
    PE A N O AR I T H M E T I C
    PÉTER

    View Slide

  94. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    AX I O M AT I C LO G I C · FN NO TAT I O N
    FU N C T I O N S A S GR A P H S · CU R RY I N G
    1891
    PÉTER

    View Slide

  95. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    PR I N C I P I A MAT H E M AT I C A
    1910
    RU S S E L L ’S PA R A D OX · FN NO TAT I O N
    PÉTER

    View Slide

  96. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    CO M B I N AT O RY LO G I C
    CO M B I N AT O R S · CU R RY I N G
    1920
    PÉTER

    View Slide

  97. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    FU N C T I O N A L SY S T E M O F SE T TH E O RY
    1925
    (OV E R L A P P E D W I T H CO M B I N AT O RY LO G I C )
    PÉTER

    View Slide

  98. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    CO M B I N AT O RY LO G I C (AG A I N )
    CO M B I N AT O R S · M A N Y C O N T R I B U T I O N S
    1926
    PÉTER

    View Slide

  99. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    D I S C OV E R S SC H Ö N F I N K E L
    “This paper anticipates much of what I have done.”
    1927
    PÉTER

    View Slide

  100. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    IN C O M P L E T E N E S S TH E O R E M S
    1931
    EN D I N G T H E SE A RC H FO R SU F F I C I E N T AX I O M S
    PÉTER

    View Slide

  101. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    RE C U R S I V E FU N C T I O N TH E O RY
    1932
    RE K U R S I V E FU N K T I O N E N
    PÉTER

    View Slide

  102. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    -CA L C U L U S
    AN EF F E C T I V E MO D E L O F CO M P U TAT I O N
    1932
    PÉTER

    View Slide

  103. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    I N C O N S I S T E N C Y O F S P E C I A L I Z E D
    1931–1936
    C O N S I S T E N C Y O F P U R E
    PÉTER

    View Slide

  104. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    SO LV E S T H E DE C I S I O N PRO B L E M
    V I A T H E -CA L C U L U S
    1936
    PÉTER

    View Slide

  105. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    SO LV E S T H E DE C I S I O N PRO B L E M
    1936
    V I A T H E TU R I N G MAC H I N E
    PÉTER

    View Slide

  106. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    ES TA B L I S H E S T H E CH U RC H -TU R I N G TH E S I S
    1936
    -CA L C U L U S 㱻 TU R I N G MAC H I N E
    PÉTER

    View Slide

  107. PEANO
    FREGE
    RUSSELL
    SCHÖNFINKEL
    VON NEUMANN
    CURRY CHURCH
    GÖDEL
    TURING
    KLEENE ROSSER
    O B TA I N S PH D U N D E R CH U RC H
    1936–1938
    PU B L I S H E S 1S T FI X E D -PO I N T CO M B I N AT O R
    PÉTER

    View Slide

  108. combinator?

    View Slide

  109. COMBINATORS
    functions with no free variables

    View Slide

  110. COMBINATORS
    functions with no free variables
    b.b combinator
    b.a not a combinator

    View Slide

  111. COMBINATORS
    functions with no free variables
    b.b combinator
    b.a not a combinator
    ab.a combinator
    a.ab not a combinator

    View Slide

  112. COMBINATORS
    functions with no free variables
    b.b combinator
    b.a not a combinator
    ab.a combinator
    a.ab not a combinator
    abc.c(e.b) combinator

    View Slide

  113. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  114. CARDINAL
    fab.fba

    View Slide

  115. λ
    JS C = f => a => b => f(b)(a)
    C := fab.fba

    View Slide

  116. λ
    JS C(K)(I)(M) === ?
    C K I M = ?
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  117. λ
    JS C(K)(I)(M) === M
    C K I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  118. λ
    JS C(K)(I)(M) === M
    C K I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  119. λ
    JS KI(I)(M) === M
    KI I M = M
    C := fab.fba
    C = f => a => b => f(b)(a)

    View Slide

  120. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  121. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  122. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a first, const const
    KI Kite ab.b = KI = CK second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°-1° composition (.)
    B1
    Blackbird fgab.f(gab) = BBB 1°-2° composition (.) . (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id

    View Slide

  123. flip const 1 8 == 8

    View Slide

  124. so?

    View Slide

  125. -CALCULUS
    abstract symbol rewriting
    functional computation
    TURING MACHINE
    hypothetical device
    state-based computation
    (f.ff)a.a
    purely functional programming languages
    higher-level machine-centric languages
    assembly languages
    machine code
    higher-level abstract stateful languages
    real computers

    View Slide

  126. TM

    View Slide

  127. EVERYTHING
    CAN BE
    FUNCTIONS
    *though in FP, not everything
    IS or SHOULD BE functions
    **but maybe more than you expect

    View Slide


  128. TRUE FALSE NOT AND OR BEQ

    View Slide

  129. !x == y || (a && z)

    View Slide

  130. !x == y || (a && z)

    View Slide

  131. how‽

    View Slide

  132. λ
    JS bool

    View Slide

  133. λ
    JS const result = bool ? exp1 : exp2

    View Slide

  134. λ
    JS const result = bool ? exp1 : exp2
    // true

    View Slide

  135. λ
    JS const result = bool ? exp1 : exp2
    // false

    View Slide

  136. λ
    JS const result = bool ? exp1 : exp2

    View Slide

  137. λ
    JS const result = bool ? exp1 : exp2
    result := ?

    View Slide

  138. λ
    JS const result = bool ? exp1 : exp2
    result := bool ? exp1 : exp2

    View Slide

  139. λ
    JS const result = bool ? exp1 : exp2
    result := bool ? exp1 : exp2

    View Slide

  140. λ
    JS const result = bool ? exp1 : exp2
    result := bool exp1 exp2

    View Slide

  141. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2

    View Slide

  142. λ
    JS
    result := func exp1 exp2
    const result = bool (exp1) (exp2)
    // true

    View Slide

  143. λ
    JS
    result := func exp1 exp2
    const result = bool (exp1) (exp2)
    // false

    View Slide

  144. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2
    TRUE
    FALSE

    View Slide

  145. λ
    JS const result = bool (exp1) (exp2)
    result := func exp1 exp2
    K
    KI

    View Slide

  146. λ
    JS const T = K
    const F = KI
    TRUE := K
    FALSE := KI = C K
    CHURCH ENCODINGS: BOOLEANS

    View Slide

  147. λ
    JS p

    View Slide

  148. λ
    JS !p

    View Slide

  149. λ
    JS !p
    ! p

    View Slide

  150. λ
    JS !p
    ! p

    View Slide

  151. λ
    JS not(p)
    NOT p

    View Slide

  152. λ
    JS not(T) === F
    not(F) === T
    NOT T = F
    NOT F = T

    View Slide

  153. λ
    JS not(K) === KI
    not(KI) === K
    NOT K = KI
    NOT (KI) = K

    View Slide

  154. λ
    JS not(K) === KI
    not(KI) === K
    NOT K = KI
    NOT (KI) = K
    ab.a ba.a
    ba.a ab.a

    View Slide

  155. λ
    JS C(K) (chirp)(tweet) === tweet
    C(KI)(chirp)(tweet) === chirp
    C K = KI
    C (KI) = K

    View Slide

  156. λ
    JS C(T) (chirp)(tweet) === tweet
    C(F) (chirp)(tweet) === chirp
    C T = F
    C F = T

    View Slide

  157. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  158. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  159. λ
    JS not(p)
    NOT p
    F
    T
    F
    T

    View Slide

  160. λ
    JS not(T)
    NOT T
    F
    T
    F
    T

    View Slide

  161. λ
    JS not(F)
    NOT F
    F
    T
    F
    T

    View Slide

  162. λ
    JS not( )
    NOT
    F
    T
    F
    T
    p
    p

    View Slide

  163. λ
    JS p F T
    F T
    p
    ( )
    ( )

    View Slide

  164. λ
    JS T F T
    F T
    T
    ( )
    ( )
    K
    K

    View Slide

  165. λ
    JS ( ) ( )
    T F T
    F T
    T
    K
    K
    KI
    KI

    View Slide

  166. λ
    JS p F T
    F T
    p
    ( )
    ( )

    View Slide

  167. λ
    JS ( ) ( )
    F F T
    F T
    F
    KI
    KI

    View Slide

  168. λ
    JS ( ) ( )
    F F T
    F T
    F
    KI
    KI K
    K

    View Slide

  169. λ
    JS p F T
    F T
    p
    ( )
    ( )

    View Slide

  170. λ
    JS p F T
    F T
    p
    ( )
    ( )
    p .
    p =>

    View Slide

  171. λ
    JS const not = p => p(F)(T)
    NOT := p.pFT

    View Slide

  172. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  173. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  174. λ
    JS const and = ?
    AND := ?

    View Slide

  175. λ
    JS const and = ? => ?
    AND := ?.?

    View Slide

  176. λ
    JS const and = p => q => ?
    AND := pq.?

    View Slide

  177. λ
    JS const and = p => q => p…
    AND := pq.p…

    View Slide

  178. λ
    JS const and = p => q => p(?)(¿)
    AND := pq.p?¿

    View Slide

  179. λ
    JS const and = p => q => p(?)(¿)
    AND := pq.p?¿
    F
    F

    View Slide

  180. λ
    JS const and = p => q => p(?)(¿)
    AND := pq.p?¿
    F
    F

    View Slide

  181. λ
    JS const and = p => q => p(?)(F)
    AND := pq.p?F

    View Slide

  182. λ
    JS const and = p => q => p(?)(F)
    AND := pq.p?F
    T
    T

    View Slide

  183. λ
    JS const and = p => q => p(?)(F)
    AND := pq.p?F
    T
    T

    View Slide

  184. λ
    JS const and = p => q => p(q)(F)
    AND := pq.pqF

    View Slide

  185. pq.p F
    q

    View Slide

  186. pq.p
    F
    q

    View Slide

  187. pq.p
    p
    q

    View Slide

  188. pq.p p
    q

    View Slide

  189. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  190. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  191. λ
    JS const or = ?
    OR := ?

    View Slide

  192. λ
    JS const or = p => q => …
    OR := pq.…

    View Slide

  193. λ
    JS const or = p => q => p(?)(¿)
    OR := pq.p?¿

    View Slide

  194. λ
    JS const or = p => q => p(T)(¿)
    OR := pq.pT¿

    View Slide

  195. λ
    JS const or = p => q => p(T)(q)
    OR := pq.pTq

    View Slide

  196. λ
    JS const or = p => q => p(p)(q)
    OR := pq.ppq

    View Slide

  197. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  198. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  199. pq.ppq

    View Slide

  200. ( pq.ppq ) xy

    View Slide

  201. ( pq.ppq ) xy = ?

    View Slide

  202. ( pq.ppq ) xy = xxy

    View Slide

  203. ( pq.ppq ) xy = xxy
    ( ? ) xy = xxy

    View Slide

  204. ( pq.ppq ) xy = xxy
    ( ? ) xy = xxy

    View Slide

  205. ( pq.ppq ) xy = xxy
    M xy = xxy

    View Slide

  206. ( pq.ppq ) xy = xxy
    M xy = xxy

    View Slide

  207. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  208. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  209. ( )
    pq.p( ) T
    T F F
    q
    q
    p => q => p(q(T)(F))(q(F)(T))

    View Slide

  210. ( )
    pq.p( ) T
    T F F
    q
    q

    View Slide

  211. ( )
    pq.p( ) T
    T F F
    q
    q

    View Slide

  212. ( )
    pq.p( ) T
    T F F
    q
    q

    View Slide

  213. ( )
    pq.p
    ( )
    T
    T F
    F
    q
    q

    View Slide

  214. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  215. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  216. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  217. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  218. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  219. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q

    View Slide

  220. ( )
    pq.p
    ( )
    T
    T
    F
    F
    q
    q
    BOOLEAN EQUALITY

    View Slide

  221. pq.p
    ( )
    T
    F
    q
    q

    View Slide

  222. ( )
    pq.p
    q
    NOT
    q

    View Slide

  223. ( )
    pq.p q
    q NOT

    View Slide

  224. ( )
    pq.p q
    q NOT
    p => q => p(q)(not(q))

    View Slide

  225. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  226. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  227. (ONE OF) DE MORGAN'S LAWS
    ¬(P ∧ Q) = (¬P) ∨ (¬Q)
    BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    !(p && q) === (!p) || (!q)

    View Slide

  228. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  229. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  230. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  231. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  232. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  233. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  234. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  235. BEQ (NOT (AND p q)) (OR (NOT p) (NOT q))
    (xy.x y ((fab.fba) y))
    ((fab.fba) ((xy.xyx) p q))
    ((f.ff) ((fab.fba) p) ((fab.fba) q))

    View Slide

  236. WHAT ELSE CAN WE INVENT?
    numbers
    arithmetic
    data structures
    type systems
    recursion
    Sorry… can't fit them all in today!
    See part II online

    View Slide

  237. B C K I
    KI = K I = C K
    B1
    = B B B
    Th
    = C I
    V = B C Th
    = B C (C I)

    View Slide

  238. QUESTION
    how many combinators
    are needed to form a basis?
    20? 10? 5?

    View Slide

  239. STARLING · KESTREL
    S := abc.ac(bc)
    K := ab.a

    View Slide

  240. THE
    SK
    COMBINATOR
    CALCULUS
    SK

    View Slide

  241. THE
    SK
    COMBINATOR
    CALCULUS
    SKI

    View Slide

  242. I = ?

    View Slide

  243. I = S K K

    View Slide

  244. I = S K K
    V = ?

    View Slide

  245. I = S K K
    V = (S(K((S((S(K((
    S(KS))K)))S))(KK))))
    ((S(K(S((SK)K))))K)

    View Slide

  246. BUT ACTUALLY…
    1

    View Slide

  247. IOTA
    ι := f.(f abc.ac(bc))ab.a
    I := ιι
    K := ι(ι(ιι))
    S := ι(ι(ι(ιι)))

    View Slide

  248. seriously though,
    why?

    View Slide

  249. View Slide

  250. View Slide

  251. View Slide

  252. View Slide


  253. ADDENDUM

    View Slide

  254. COMBINATORS
    Sym. Bird -Calculus Use Haskell
    I Idiot a.a identity id
    M Mockingbird f.ff self-application (cannot define)
    K Kestrel ab.a true, first, const const
    KI Kite ab.b = KI = CK false, second const id
    C Cardinal fab.fba reverse arguments flip
    B Bluebird fga.f(ga) 1°←1° composition (.)
    Th
    Thrush af.fa = CI hold an argument flip id
    V Vireo abf.fab = BCT hold a pair of args flip . flip id
    B1
    Blackbird fgab.f(gab) = BBB 1°←2° composition (.) . (.)

    View Slide

  255. CHURCH ENCODINGS: BOOLEANS
    Sym. Name -Calculus Use
    T TRUE ab.a = K = C(KI) encoding for true
    F FALSE ab.b = KI = CK encoding for false
    NOT p.pFT or C negation
    AND pq.pqF or pq.pqp conjunction
    OR pq.pTq or pq.ppq = M* disjunction
    BEQ pq.p q (NOT q) equality

    View Slide

  256. CHURCH ENCODINGS: NUMERALS
    Sym. Name -Calculus Use
    N0 ZERO fa.a = F apply f no times to a
    N1 ONCE fa.f a = I* apply f once to a
    N2 TWICE fa.f (f a) apply 2-fold f to a
    N3 THRICE fa.f (f (f a)) apply 3-fold f to a
    N4 FOURFOLD fa.f (f (f (f a))) apply 4-fold f to a
    N5 FIVEFOLD fa.f (f (f (f (f a))))) apply 5-fold f to a

    View Slide

  257. CHURCH ARITHMETIC
    Name -Calculus Use
    SUCC nf.B f (nf) = nfa.f(nfa) successor of n
    ADD nk.n SUCC k = nkf.B (n f) (k f) addition of n and k
    MULT nkf.n(kf) = B multiplication of n and k
    POW nk.kn = Th
    raise n to the power of k
    PRED n.n (g.IS0 (g N1) I (B SUCC g)) (K N0) N0 predecessor of n
    PRED n.FST (n Φ (PAIR N0 N0)) predecessor of n (easier)
    SUB nk.k PRED n subtract k from n

    View Slide

  258. CHURCH ARITHMETIC: BOOLEAN OPS
    Name -Calculus Use
    IS0 n.n (K F) T test if n = 0
    LEQ nk.IS0 (SUB n k) test if n <= k
    EQ nk.AND (LEQ n k) (LEQ k n) test if n = k
    GT nk.B1
    NOT LEQ test if n > k

    View Slide

  259. CHURCH PAIRS
    Sym. Name -Calculus Use
    PAIR abf.fab = V pair two arguments
    FST p.pK extract first of pair
    SND p.p(KI) extract second of pair
    Φ PHI p.PAIR (SND p) (SUCC (SND p) copy 2nd to 1st, inc 2nd
    SET1ST cp.PAIR c (SND p) set first, immutably
    SET2ND cp.PAIR (FST p) c set second, immutably

    View Slide

  260. f.(x.f(xx))(x.f(xx))
    THE Y FIXED-POINT COMBINATOR

    View Slide

  261. f.(x.f(v.xxv))(x.f(v.xxv))
    THE Z FIXED-POINT COMBINATOR

    View Slide

  262. ADDITIONAL RESOURCES
    Combinator Birds · Rathman · http://bit.ly/2iudab9
    To Mock a Mockingbird · Smullyan · http://amzn.to/2g9AlXl
    To Dissect a Mockingbird · Keenan · http://dkeenan.com/Lambda
    .:.
    A Tutorial Introduction to the Lambda Calculus · Rojas · http://bit.ly/1agRC97
    Lambda Calculus · Wikipedia · http://bit.ly/1TsPkGn
    The Lambda Calculus · Stanford · http://stanford.io/2vtg8hp
    .:.
    History of Lambda-calculus and Combinatory Logic
    Cardone, Hindley · http://bit.ly/2wCxv4k
    .:.
    An Introduction to Functional Programming
    through Lambda Calculus · Michaelson · http://amzn.to/2vtts56

    View Slide