Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Short Introduction for Kysely
Search
YUMOTO Michitaka
November 20, 2024
Technology
1
68
Short Introduction for Kysely
Remix Tokyo × Cloudflare Meetup Lighting Talks
https://lu.ma/wv9xzam7
YUMOTO Michitaka
November 20, 2024
Tweet
Share
More Decks by YUMOTO Michitaka
See All by YUMOTO Michitaka
Dive Into Single Fetch
gothedistance
1
120
クラフトマンシップ(職人魂)を湾岸MIDNIGHTから学ぼう / Learn Craftsmanship from Wangan Midnight
gothedistance
0
190
プロ野球をデータモデリングしてみたら沼だった件 / Baseball ERD Modeling to be obsessed
gothedistance
2
650
フロントエンド開発スタイルの変遷と、私がFlutterにハマったわけ
gothedistance
8
11k
ITプロジェクトのはじめ方 / How to work around software project
gothedistance
27
150k
私がITプランナーを志すようになった理由、そして、目指していること / bpstudy142_why_i_wanna_be_a_it_plannner
gothedistance
1
770
ITプランナーの必要性を小一時間問い詰めたい / Why We need IT-Planner.
gothedistance
0
13k
IT企画をちゃんとやりたい#01 ガイダンス資料 / IT Planning do well_01
gothedistance
0
6.5k
bpstudy_127
gothedistance
0
470
Other Decks in Technology
See All in Technology
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
330
C++26 エラー性動作
faithandbrave
2
700
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
250
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
520
Wvlet: A New Flow-Style Query Language For Functional Data Modeling and Interactive Data Analysis - Trino Summit 2024
xerial
1
110
20241220_S3 tablesの使い方を検証してみた
handy
3
330
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
420
祝!Iceberg祭開幕!re:Invent 2024データレイク関連アップデート10分総ざらい
kniino
2
250
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
210
Amazon SageMaker Unified Studio(Preview)、Lakehouse と Amazon S3 Tables
ishikawa_satoru
0
150
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
370
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
330
Featured
See All Featured
Scaling GitHub
holman
458
140k
Writing Fast Ruby
sferik
628
61k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Statistics for Hackers
jakevdp
796
220k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Agile that works and the tools we love
rasmusluckow
328
21k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Transcript
Kysely ポータブルなTypeScript のクエリビルダ Remix Meetup #2 2024.09.17 @gothedistance Quality Start,inc
Agenda TypeScript とORM Kysely とは Kysely のPros/Cons Quality Start,inc 2
自己紹介 YUMOTO Michitaka 1979 年生まれ、松坂世代 https://x.com/gothedistance Flutter/Remix/Python を主に使っています。 野球が好きで、東京ヤクルトスワローズのファン Quality
Start,inc 3
ORM に疲れた時期が個人的にあった Remix に出会うまではPython を使うことが多く、SQLAlchemy を使った。 SQLAlchemy は重厚長大なORM で、モデル定義もガッツリ、DB とのやり取
りも独自のモデル設計。情報量がとにかく多い。 Remix を書き始めて、自分は 「コンパイルできるSQL 」 が欲しかっただけ なのでは・・・と天啓があった。 ORM のコードの書き方への習熟があっても最後は発行しているSQL のレビ ューになるし、ORM ではなくクエリビルダを使ってみようかな! というわけで、Kysely を使ってみた。 kysely-d1 を使えばCloudFlare D1 が 使える! Quality Start,inc 4
Kysely こんな感じでSQL を組み立ててくれるライブラリ。 selectFrom, innerJoin, where, select などを発行する時に、型推論が効いて いるので自動的にカラムやテーブル名の補完が走ります。 const
result = await db .selectFrom('person') .innerJoin('pet', 'pet.owner_id', 'person.id') .select(['person.id', 'pet.name as pet_name']) .execute() Quality Start,inc 5
Kysely のスキーマ定義(TypeScript の型定義) Prisma のような独自DSL ではなく、TS の型定義でDB スキーマを表現。 ORM で必ずあるリレーション定義がありません!
クエリビルダなんで! 文字数のようなカラムの付帯情報もありません! クエリビルダな(ry export type Pet = { id: Generated<number>; owner_id: Generated<int>; name: Generated<string>; created: Timestamp | null; modified: Timestamp | null; }; Quality Start,inc 6
Kysely の嬉しみ SQL の表現力を最大限にかせる!これが一番! Prisma のようなORM は、リレーション/ スキーマ定義をテコにデータの CRUD を単純化するために、SQL
の表現力を殺している。 Prisma はDB 関数,CTE,EXISTS,CASE, サブクエリなどが使えず、 queryRaw や TypedSQL で対応できるが、SQL の表現力を活かす方法に振り切ってる Kysely には勝てない。 Prisma の場合は1つの関数実行でN 個のクエリが吐かれる事が多く、個人 的に違和感がある。 ORM の設定や仕様に追従/ 習熟して得られるメリットが薄いなら、クエリ ビルダもアリよりのアリです。 Quality Start,inc 7
Kysely に求めてはあかんもの ネストされたデータの戻り値。 order:{detail: [ {item:}]} みたいな。 Kysely は一次元配列しか返しません。 SQL
の発行によってネストしたオブ ジェクトは得られないと同じ。JOIN 先のカラム名が同じ場合は上書きされ る。カラムの選択が必須になると思っていい。 マイグレーションは正直Prisma のほうが楽。モデル定義を持っているから ね。 スキーマのモデルに拡張メソッドを生やすとか、クエリ発行前にHook する イベント仕込むとか、そういうのも持ってないです。ActiveRecord 風なコ ードを書くのは難しい。 ORM との距離のとり方について誰か僕と話そう!! Quality Start,inc 8