Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Short Introduction for Kysely
Search
YUMOTO Michitaka
November 20, 2024
Technology
1
200
Short Introduction for Kysely
Remix Tokyo × Cloudflare Meetup Lighting Talks
https://lu.ma/wv9xzam7
YUMOTO Michitaka
November 20, 2024
Tweet
Share
More Decks by YUMOTO Michitaka
See All by YUMOTO Michitaka
Dive Into Single Fetch
gothedistance
1
190
クラフトマンシップ(職人魂)を湾岸MIDNIGHTから学ぼう / Learn Craftsmanship from Wangan Midnight
gothedistance
0
260
プロ野球をデータモデリングしてみたら沼だった件 / Baseball ERD Modeling to be obsessed
gothedistance
2
770
フロントエンド開発スタイルの変遷と、私がFlutterにハマったわけ
gothedistance
8
12k
ITプロジェクトのはじめ方 / How to work around software project
gothedistance
27
150k
私がITプランナーを志すようになった理由、そして、目指していること / bpstudy142_why_i_wanna_be_a_it_plannner
gothedistance
1
870
ITプランナーの必要性を小一時間問い詰めたい / Why We need IT-Planner.
gothedistance
0
14k
IT企画をちゃんとやりたい#01 ガイダンス資料 / IT Planning do well_01
gothedistance
0
6.5k
bpstudy_127
gothedistance
0
530
Other Decks in Technology
See All in Technology
ECS モニタリング手法大整理
yendoooo
1
110
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
250
モノレポにおけるエラー管理 ~Runbook自動生成とチームメンションの最適化
biwashi
0
460
Rethinking Incident Response: Context-Aware AI in Practice - Incident Buddy Edition -
rrreeeyyy
0
130
GitHub Copilot coding agent を推したい / AIDD Nagoya #1
tnir
0
220
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
nasuvitz
6
350
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
2
230
Infrastructure as Prompt実装記 〜Bedrock AgentCoreで作る自然言語インフラエージェント〜
yusukeshimizu
2
170
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
1
270
形式手法特論:位相空間としての並行プログラミング #kernelvm / Kernel VM Study Tokyo 18th
ytaka23
3
1.6k
Mackerel in さくらのクラウド
cubicdaiya
1
390
AIと描く、未来のBacklog 〜プロジェクト管理の次の10年を想像し、創造するセッション〜
hrm_o25
0
120
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Statistics for Hackers
jakevdp
799
220k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
A designer walks into a library…
pauljervisheath
207
24k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Become a Pro
speakerdeck
PRO
29
5.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
890
How GitHub (no longer) Works
holman
314
140k
Transcript
Kysely ポータブルなTypeScript のクエリビルダ Remix Meetup #2 2024.09.17 @gothedistance Quality Start,inc
Agenda TypeScript とORM Kysely とは Kysely のPros/Cons Quality Start,inc 2
自己紹介 YUMOTO Michitaka 1979 年生まれ、松坂世代 https://x.com/gothedistance Flutter/Remix/Python を主に使っています。 野球が好きで、東京ヤクルトスワローズのファン Quality
Start,inc 3
ORM に疲れた時期が個人的にあった Remix に出会うまではPython を使うことが多く、SQLAlchemy を使った。 SQLAlchemy は重厚長大なORM で、モデル定義もガッツリ、DB とのやり取
りも独自のモデル設計。情報量がとにかく多い。 Remix を書き始めて、自分は 「コンパイルできるSQL 」 が欲しかっただけ なのでは・・・と天啓があった。 ORM のコードの書き方への習熟があっても最後は発行しているSQL のレビ ューになるし、ORM ではなくクエリビルダを使ってみようかな! というわけで、Kysely を使ってみた。 kysely-d1 を使えばCloudFlare D1 が 使える! Quality Start,inc 4
Kysely こんな感じでSQL を組み立ててくれるライブラリ。 selectFrom, innerJoin, where, select などを発行する時に、型推論が効いて いるので自動的にカラムやテーブル名の補完が走ります。 const
result = await db .selectFrom('person') .innerJoin('pet', 'pet.owner_id', 'person.id') .select(['person.id', 'pet.name as pet_name']) .execute() Quality Start,inc 5
Kysely のスキーマ定義(TypeScript の型定義) Prisma のような独自DSL ではなく、TS の型定義でDB スキーマを表現。 ORM で必ずあるリレーション定義がありません!
クエリビルダなんで! 文字数のようなカラムの付帯情報もありません! クエリビルダな(ry export type Pet = { id: Generated<number>; owner_id: Generated<int>; name: Generated<string>; created: Timestamp | null; modified: Timestamp | null; }; Quality Start,inc 6
Kysely の嬉しみ SQL の表現力を最大限にかせる!これが一番! Prisma のようなORM は、リレーション/ スキーマ定義をテコにデータの CRUD を単純化するために、SQL
の表現力を殺している。 Prisma はDB 関数,CTE,EXISTS,CASE, サブクエリなどが使えず、 queryRaw や TypedSQL で対応できるが、SQL の表現力を活かす方法に振り切ってる Kysely には勝てない。 Prisma の場合は1つの関数実行でN 個のクエリが吐かれる事が多く、個人 的に違和感がある。 ORM の設定や仕様に追従/ 習熟して得られるメリットが薄いなら、クエリ ビルダもアリよりのアリです。 Quality Start,inc 7
Kysely に求めてはあかんもの ネストされたデータの戻り値。 order:{detail: [ {item:}]} みたいな。 Kysely は一次元配列しか返しません。 SQL
の発行によってネストしたオブ ジェクトは得られないと同じ。JOIN 先のカラム名が同じ場合は上書きされ る。カラムの選択が必須になると思っていい。 マイグレーションは正直Prisma のほうが楽。モデル定義を持っているから ね。 スキーマのモデルに拡張メソッドを生やすとか、クエリ発行前にHook する イベント仕込むとか、そういうのも持ってないです。ActiveRecord 風なコ ードを書くのは難しい。 ORM との距離のとり方について誰か僕と話そう!! Quality Start,inc 8