Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Short Introduction for Kysely
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
YUMOTO Michitaka
November 20, 2024
Technology
1
370
Short Introduction for Kysely
Remix Tokyo × Cloudflare Meetup Lighting Talks
https://lu.ma/wv9xzam7
YUMOTO Michitaka
November 20, 2024
Tweet
Share
More Decks by YUMOTO Michitaka
See All by YUMOTO Michitaka
Dive Into Single Fetch
gothedistance
1
230
クラフトマンシップ(職人魂)を湾岸MIDNIGHTから学ぼう / Learn Craftsmanship from Wangan Midnight
gothedistance
0
300
プロ野球をデータモデリングしてみたら沼だった件 / Baseball ERD Modeling to be obsessed
gothedistance
2
820
フロントエンド開発スタイルの変遷と、私がFlutterにハマったわけ
gothedistance
8
14k
ITプロジェクトのはじめ方 / How to work around software project
gothedistance
28
150k
私がITプランナーを志すようになった理由、そして、目指していること / bpstudy142_why_i_wanna_be_a_it_plannner
gothedistance
1
920
ITプランナーの必要性を小一時間問い詰めたい / Why We need IT-Planner.
gothedistance
0
14k
IT企画をちゃんとやりたい#01 ガイダンス資料 / IT Planning do well_01
gothedistance
0
6.5k
bpstudy_127
gothedistance
0
570
Other Decks in Technology
See All in Technology
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
330
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
430
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
AI駆動開発を事業のコアに置く
tasukuonizawa
1
270
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
260
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
580
Featured
See All Featured
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
Side Projects
sachag
455
43k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
How GitHub (no longer) Works
holman
316
140k
Transcript
Kysely ポータブルなTypeScript のクエリビルダ Remix Meetup #2 2024.09.17 @gothedistance Quality Start,inc
Agenda TypeScript とORM Kysely とは Kysely のPros/Cons Quality Start,inc 2
自己紹介 YUMOTO Michitaka 1979 年生まれ、松坂世代 https://x.com/gothedistance Flutter/Remix/Python を主に使っています。 野球が好きで、東京ヤクルトスワローズのファン Quality
Start,inc 3
ORM に疲れた時期が個人的にあった Remix に出会うまではPython を使うことが多く、SQLAlchemy を使った。 SQLAlchemy は重厚長大なORM で、モデル定義もガッツリ、DB とのやり取
りも独自のモデル設計。情報量がとにかく多い。 Remix を書き始めて、自分は 「コンパイルできるSQL 」 が欲しかっただけ なのでは・・・と天啓があった。 ORM のコードの書き方への習熟があっても最後は発行しているSQL のレビ ューになるし、ORM ではなくクエリビルダを使ってみようかな! というわけで、Kysely を使ってみた。 kysely-d1 を使えばCloudFlare D1 が 使える! Quality Start,inc 4
Kysely こんな感じでSQL を組み立ててくれるライブラリ。 selectFrom, innerJoin, where, select などを発行する時に、型推論が効いて いるので自動的にカラムやテーブル名の補完が走ります。 const
result = await db .selectFrom('person') .innerJoin('pet', 'pet.owner_id', 'person.id') .select(['person.id', 'pet.name as pet_name']) .execute() Quality Start,inc 5
Kysely のスキーマ定義(TypeScript の型定義) Prisma のような独自DSL ではなく、TS の型定義でDB スキーマを表現。 ORM で必ずあるリレーション定義がありません!
クエリビルダなんで! 文字数のようなカラムの付帯情報もありません! クエリビルダな(ry export type Pet = { id: Generated<number>; owner_id: Generated<int>; name: Generated<string>; created: Timestamp | null; modified: Timestamp | null; }; Quality Start,inc 6
Kysely の嬉しみ SQL の表現力を最大限にかせる!これが一番! Prisma のようなORM は、リレーション/ スキーマ定義をテコにデータの CRUD を単純化するために、SQL
の表現力を殺している。 Prisma はDB 関数,CTE,EXISTS,CASE, サブクエリなどが使えず、 queryRaw や TypedSQL で対応できるが、SQL の表現力を活かす方法に振り切ってる Kysely には勝てない。 Prisma の場合は1つの関数実行でN 個のクエリが吐かれる事が多く、個人 的に違和感がある。 ORM の設定や仕様に追従/ 習熟して得られるメリットが薄いなら、クエリ ビルダもアリよりのアリです。 Quality Start,inc 7
Kysely に求めてはあかんもの ネストされたデータの戻り値。 order:{detail: [ {item:}]} みたいな。 Kysely は一次元配列しか返しません。 SQL
の発行によってネストしたオブ ジェクトは得られないと同じ。JOIN 先のカラム名が同じ場合は上書きされ る。カラムの選択が必須になると思っていい。 マイグレーションは正直Prisma のほうが楽。モデル定義を持っているから ね。 スキーマのモデルに拡張メソッドを生やすとか、クエリ発行前にHook する イベント仕込むとか、そういうのも持ってないです。ActiveRecord 風なコ ードを書くのは難しい。 ORM との距離のとり方について誰か僕と話そう!! Quality Start,inc 8