Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
科学的説明を持つ機械学習システム
Search
gree_tech
PRO
July 08, 2019
Technology
0
330
科学的説明を持つ機械学習システム
「第2回機械学習工学研究会(MLSE夏合宿2019)」で発表された資料です。
https://mlxse.connpass.com/event/121086/
gree_tech
PRO
July 08, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
今この時代に技術とどう向き合うべきか
gree_tech
PRO
2
2.2k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
75
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
66
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
460
あうもんと学ぶGenAIOps
gree_tech
PRO
0
55
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
74
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
95
コンテンツモデレーションにおける適切な監査範囲の考察
gree_tech
PRO
0
50
新サービス立ち上げの裏側 - QUANT for Shopsで実践した開発から運用まで
gree_tech
PRO
0
60
Other Decks in Technology
See All in Technology
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
360
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
300
QA業務を変える(!?)AIを併用した不具合分析の実践
ma2ri
0
160
OSSで50の競合と戦うためにやったこと
yamadashy
3
1k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
組織全員で向き合うAI Readyなデータ利活用
gappy50
4
1.3k
様々なファイルシステム
sat
PRO
0
260
Azure Well-Architected Framework入門
tomokusaba
1
140
OTEPsで知るOpenTelemetryの未来 / Observability Conference Tokyo 2025
arthur1
0
290
Observability — Extending Into Incident Response
nari_ex
1
540
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
3
160
AI時代の発信活動 ~技術者として認知してもらうための発信法~ / 20251028 Masaki Okuda
shift_evolve
PRO
1
110
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
We Have a Design System, Now What?
morganepeng
53
7.8k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
640
A better future with KSS
kneath
239
18k
Music & Morning Musume
bryan
46
6.9k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
The Pragmatic Product Professional
lauravandoore
36
7k
How STYLIGHT went responsive
nonsquared
100
5.9k
Transcript
科学的説明を持つ 機械学習システム 橋本順之 グリー株式会社 Rev0.1 1
発表の流れ • 説明が必要とされる背景確認 • 導入したい説明モデルの確認 • LIMEを説明に使った場合の考察 • 説明を組み込んだ再利用できる機械学習モデルの提案 •
まとめ 2
背景:なぜ説明がほしい? • 機械学習に対する期待と不安 ◦ モデルはデータ依存 ◦ 顧客からはブラックボックスに見え、信頼できない • 総務省のAI開発ガイドライン ◦
AIの検証や説明をするように努力を求める • AIに対する説明が必要 ◦ システムの仕様に説明に関するものが必要ではないか ◦ 説明できないと賠償などのリスクになる恐れがある(担当者がやめていたら?) 3 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
説明とは何か? • 解釈性 (インタプリンタビリティ) ◦ 機械学習の結果の解釈や解析に重点を置くもの • 科学的説明(エクスプラネーション) ◦ 法則と因果関係に重点を置くもの
• 心理学的説明(パースエーション) ◦ 説明する相手を説得したり ,納得させることに重点を置くもの ◦ *総務省の資料は人間中心とある * • 説明責任(アカウンタビリティ) ◦ 説明する義務や結果の保証を重点を置くもの 4
科学的説明とはなにか?、なぜそれを使うのか? • ヘンペルの 演繹的法則論的モデル (DN モデル) ◦ 物理の法則由来 ◦ 物理量と数式で演繹的に説明
• 必ずしも言語的なものでなくてよい ◦ ニュートンの万有引力の法則は数式 ◦ プログラムで扱いやすい • 組み合わせやすい ◦ 演繹的な推論をするための説明 ◦ 既知の法則を組み合わせて推論をする • 検証しやすい ◦ 現象がルールにあっているかチェックできる 5
どんな説明がほしいのか 6 機械学習モデル M 入力 パラメータ 予測 説明 説明が満たすべきルールはなにか? どんなルールがあると便利か?
説明が演繹的なルール(ニュートンの法則のようなもの)ならどうなるか?
どんな説明がほしいのか 機械学習 モデル M 入力A パラメータP 予測B 説明C 説明C 説明を満たす入力があるなら同じ予測結果(B=B')になるはず。
入力例生成機をシステムに組み込むのはどうか? 入力A' 予測B' 機械学習 モデル M P 入力例生成機
既存の説明:LIME 機械学習モデル M ラブラドール パラメータP 入力 説明 予測結果 機械学習モデル M
説明から入力例~前提条件を出す 入力例生成機 ラブラドール 説明 予測結果 パラメータP 説明から 作られる画像
説明の検証 機械学習モデル M ラブラドール パラメータP 説明からつくった例で予測すると同じ予測結果と同じ説明がでるはず 逆に、同じ予測結果と説明でないなら不十分な説明ではないか? 説明から 作られる画像 説明
予測結果
LIMEによる説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明
機械学習 モデル M ラブラ ドール 例 説 明 説 明 入力例生成機 説明が不変量になりそう
決定木による説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明
機械学習 モデル M ??? 例 説 明 説 明 入力例生成機 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール
発表の流れ • 説明が必要とされる背景確認 • 導入したい説明モデルの確認 • LIMEを説明に使った場合の考察 • 説明を組み込んだ再利用できる機械学習モデルの提案 •
まとめ 13 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
従来手法:機械学習のモデル化 14 Backprop as Functor[1]より • P:パラメータの集合 • A:入力の集合 •
B:予測結果の集合 • I: P×A → B //予測関数 • U: P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 機械学習 モデル M 入 力 パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予 測 [1]https://arxiv.org/abs/1711.10455
説明のある機械学習のモデル化 15 • P:パラメータの集合 • A:入力の集合 • B:予測結果の集合 • C:説明の集合
• I: P×A → B //予測関数 • U : P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 • E: P×A×B → C //説明関数 • D: P×B×C → A. //説明の例を出す関数 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 入力例生成機 入力例 予 測 説 明
説明のある機械学習のモデル化 16 入力例生成機 D’ 入力例 予測B’ 説明C’ 入力例生成機 D 入力例A’
説明C 機械学習 モデル M 入力A パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予測B’ 説明C’ 説 明 • M,M’: 機械学習のモデル • D,D’: MとM’に対応する入力例を出すモデル
まとめ 17 • 科学的説明の演繹的法則論的モデルを利用 ◦ 説明=物理の法則のようなもの • 説明が不変量になる • 説明と入力例生成器をもつ機械学習モデルの提案
課題 • 説明に納得や信頼性がない • 説明はモデルの正しさの指標ではない