Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

科学的説明を持つ機械学習システム

 科学的説明を持つ機械学習システム

「第2回機械学習工学研究会(MLSE夏合宿2019)」で発表された資料です。
https://mlxse.connpass.com/event/121086/

gree_tech

July 08, 2019
Tweet

More Decks by gree_tech

Other Decks in Technology

Transcript

  1. 背景:なぜ説明がほしい? • 機械学習に対する期待と不安 ◦ モデルはデータ依存 ◦ 顧客からはブラックボックスに見え、信頼できない • 総務省のAI開発ガイドライン ◦

    AIの検証や説明をするように努力を求める • AIに対する説明が必要 ◦ システムの仕様に説明に関するものが必要ではないか ◦ 説明できないと賠償などのリスクになる恐れがある(担当者がやめていたら?) 3 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
  2. 説明とは何か? • 解釈性 (インタプリンタビリティ) ◦ 機械学習の結果の解釈や解析に重点を置くもの • 科学的説明(エクスプラネーション) ◦ 法則と因果関係に重点を置くもの

    • 心理学的説明(パースエーション) ◦ 説明する相手を説得したり ,納得させることに重点を置くもの ◦ *総務省の資料は人間中心とある * • 説明責任(アカウンタビリティ) ◦ 説明する義務や結果の保証を重点を置くもの 4
  3. 科学的説明とはなにか?、なぜそれを使うのか? • ヘンペルの 演繹的法則論的モデル (DN モデル) ◦ 物理の法則由来 ◦ 物理量と数式で演繹的に説明

    • 必ずしも言語的なものでなくてよい ◦ ニュートンの万有引力の法則は数式 ◦ プログラムで扱いやすい • 組み合わせやすい ◦ 演繹的な推論をするための説明 ◦ 既知の法則を組み合わせて推論をする • 検証しやすい ◦ 現象がルールにあっているかチェックできる 5
  4. どんな説明がほしいのか 機械学習 モデル M 入力A パラメータP 予測B 説明C 説明C 説明を満たす入力があるなら同じ予測結果(B=B')になるはず。

    入力例生成機をシステムに組み込むのはどうか? 入力A' 予測B' 機械学習 モデル M P 入力例生成機
  5. LIMEによる説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明

    機械学習 モデル M ラブラ ドール 例 説 明 説 明 入力例生成機 説明が不変量になりそう
  6. 決定木による説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明

    機械学習 モデル M ??? 例 説 明 説 明 入力例生成機 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール
  7. 発表の流れ • 説明が必要とされる背景確認 • 導入したい説明モデルの確認 • LIMEを説明に使った場合の考察 • 説明を組み込んだ再利用できる機械学習モデルの提案 •

    まとめ 13 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
  8. 従来手法:機械学習のモデル化 14 Backprop as Functor[1]より • P:パラメータの集合 • A:入力の集合 •

    B:予測結果の集合 • I: P×A → B   //予測関数 • U: P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 機械学習 モデル M 入 力 パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予 測 [1]https://arxiv.org/abs/1711.10455
  9. 説明のある機械学習のモデル化 15 • P:パラメータの集合 • A:入力の集合 • B:予測結果の集合 • C:説明の集合

    • I: P×A → B   //予測関数 • U : P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 • E: P×A×B → C //説明関数 • D: P×B×C → A. //説明の例を出す関数 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 入力例生成機 入力例 予 測 説 明
  10. 説明のある機械学習のモデル化 16 入力例生成機 D’ 入力例 予測B’ 説明C’ 入力例生成機 D 入力例A’

    説明C 機械学習 モデル M 入力A パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予測B’ 説明C’ 説 明 • M,M’: 機械学習のモデル • D,D’: MとM’に対応する入力例を出すモデル