Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
科学的説明を持つ機械学習システム
Search
gree_tech
PRO
July 08, 2019
Technology
0
250
科学的説明を持つ機械学習システム
「第2回機械学習工学研究会(MLSE夏合宿2019)」で発表された資料です。
https://mlxse.connpass.com/event/121086/
gree_tech
PRO
July 08, 2019
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
120
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.7k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
560
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
570
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
540
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
620
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
980
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
640
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
760
Other Decks in Technology
See All in Technology
Tokyo_reInforce_2025_recap_iam_access_analyzer
hiashisan
0
170
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
390
React開発にStorybookとCopilotを導入して、爆速でUIを編集・確認する方法
yu_kod
1
120
CursorによるPMO業務の代替 / Automating PMO Tasks with Cursor
motoyoshi_kakaku
2
870
MUITにおける開発プロセスモダナイズの取り組みと開発生産性可視化の取り組みについて / Modernize the Development Process and Visualize Development Productivity at MUIT
muit
1
11k
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
260
CI/CD/IaC 久々に0から環境を作ったらこうなりました
kaz29
1
220
Glacierだからってコストあきらめてない? / JAWS Meet Glacier Cost
taishin
1
120
OPENLOGI Company Profile
hr01
0
67k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
26k
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
2
9.1k
品質と速度の両立:生成AI時代の品質保証アプローチ
odasho
1
120
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
240
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Balancing Empowerment & Direction
lara
1
400
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Faster Mobile Websites
deanohume
307
31k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Why Our Code Smells
bkeepers
PRO
337
57k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Transcript
科学的説明を持つ 機械学習システム 橋本順之 グリー株式会社 Rev0.1 1
発表の流れ • 説明が必要とされる背景確認 • 導入したい説明モデルの確認 • LIMEを説明に使った場合の考察 • 説明を組み込んだ再利用できる機械学習モデルの提案 •
まとめ 2
背景:なぜ説明がほしい? • 機械学習に対する期待と不安 ◦ モデルはデータ依存 ◦ 顧客からはブラックボックスに見え、信頼できない • 総務省のAI開発ガイドライン ◦
AIの検証や説明をするように努力を求める • AIに対する説明が必要 ◦ システムの仕様に説明に関するものが必要ではないか ◦ 説明できないと賠償などのリスクになる恐れがある(担当者がやめていたら?) 3 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
説明とは何か? • 解釈性 (インタプリンタビリティ) ◦ 機械学習の結果の解釈や解析に重点を置くもの • 科学的説明(エクスプラネーション) ◦ 法則と因果関係に重点を置くもの
• 心理学的説明(パースエーション) ◦ 説明する相手を説得したり ,納得させることに重点を置くもの ◦ *総務省の資料は人間中心とある * • 説明責任(アカウンタビリティ) ◦ 説明する義務や結果の保証を重点を置くもの 4
科学的説明とはなにか?、なぜそれを使うのか? • ヘンペルの 演繹的法則論的モデル (DN モデル) ◦ 物理の法則由来 ◦ 物理量と数式で演繹的に説明
• 必ずしも言語的なものでなくてよい ◦ ニュートンの万有引力の法則は数式 ◦ プログラムで扱いやすい • 組み合わせやすい ◦ 演繹的な推論をするための説明 ◦ 既知の法則を組み合わせて推論をする • 検証しやすい ◦ 現象がルールにあっているかチェックできる 5
どんな説明がほしいのか 6 機械学習モデル M 入力 パラメータ 予測 説明 説明が満たすべきルールはなにか? どんなルールがあると便利か?
説明が演繹的なルール(ニュートンの法則のようなもの)ならどうなるか?
どんな説明がほしいのか 機械学習 モデル M 入力A パラメータP 予測B 説明C 説明C 説明を満たす入力があるなら同じ予測結果(B=B')になるはず。
入力例生成機をシステムに組み込むのはどうか? 入力A' 予測B' 機械学習 モデル M P 入力例生成機
既存の説明:LIME 機械学習モデル M ラブラドール パラメータP 入力 説明 予測結果 機械学習モデル M
説明から入力例~前提条件を出す 入力例生成機 ラブラドール 説明 予測結果 パラメータP 説明から 作られる画像
説明の検証 機械学習モデル M ラブラドール パラメータP 説明からつくった例で予測すると同じ予測結果と同じ説明がでるはず 逆に、同じ予測結果と説明でないなら不十分な説明ではないか? 説明から 作られる画像 説明
予測結果
LIMEによる説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明
機械学習 モデル M ラブラ ドール 例 説 明 説 明 入力例生成機 説明が不変量になりそう
決定木による説明と検証 機械学習 モデル M ラブラ ドール 入 力 説 明
機械学習 モデル M ??? 例 説 明 説 明 入力例生成機 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール 決定木 背景が黒なら ラブラドール
発表の流れ • 説明が必要とされる背景確認 • 導入したい説明モデルの確認 • LIMEを説明に使った場合の考察 • 説明を組み込んだ再利用できる機械学習モデルの提案 •
まとめ 13 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 説明がでてくるモデルがほしい プログラムのインターフェースを 決めたい
従来手法:機械学習のモデル化 14 Backprop as Functor[1]より • P:パラメータの集合 • A:入力の集合 •
B:予測結果の集合 • I: P×A → B //予測関数 • U: P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 機械学習 モデル M 入 力 パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予 測 [1]https://arxiv.org/abs/1711.10455
説明のある機械学習のモデル化 15 • P:パラメータの集合 • A:入力の集合 • B:予測結果の集合 • C:説明の集合
• I: P×A → B //予測関数 • U : P×A×B → P //パラメータ更新 • r: P×A×B → A //誤差伝搬用 • E: P×A×B → C //説明関数 • D: P×B×C → A. //説明の例を出す関数 機械学習 モデル M 入 力 パラ メータ 予 測 説 明 入力例生成機 入力例 予 測 説 明
説明のある機械学習のモデル化 16 入力例生成機 D’ 入力例 予測B’ 説明C’ 入力例生成機 D 入力例A’
説明C 機械学習 モデル M 入力A パラ メータ 予 測 機械学習 モデル M’ パラ メータ 予測B’ 説明C’ 説 明 • M,M’: 機械学習のモデル • D,D’: MとM’に対応する入力例を出すモデル
まとめ 17 • 科学的説明の演繹的法則論的モデルを利用 ◦ 説明=物理の法則のようなもの • 説明が不変量になる • 説明と入力例生成器をもつ機械学習モデルの提案
課題 • 説明に納得や信頼性がない • 説明はモデルの正しさの指標ではない