Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MIRU 2019 Lunch on Seminar
Search
Hayato Maki
July 31, 2019
Research
1
280
MIRU 2019 Lunch on Seminar
Event URL:
https://sites.google.com/zozo.com/miru2019/
Hayato Maki
July 31, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
110
Today was a Good Day: The Daily Life of Software Developers
hamaki
0
110
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1.1k
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
190
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
240
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.3k
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.7k
snlp2025_prevent_llm_spikes
takase
0
420
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
360
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
130
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
610
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
350
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
89
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
22
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
320
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
760
Six Lessons from altMBA
skipperchong
29
4.1k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
50k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
350
Transcript
ϑΝογϣϯΛՊֶ͢ΔऔΓΈ ਅ༐ਓ ϦαʔναΠΤϯςΟετ גࣜձࣾ;0;0ςΫϊϩδʔζ
!2 ࣗݾհ גࣜձࣾ;0;0ςΫϊϩδʔζ ϦαʔναΠΤϯςΟετ ਅ༐ਓ ·͖ɹͱ dݱ৬ /"*45ใֶՊത࢜՝ఔमྃ ਪનγεςϜɺը૾ೝࣝͷݚڀ։ൃʹैࣄ
!3 ;0;0ͷ3%ମ੍ w 3%ͷઐ෦ॺʹਓ͕ॴଐʢ੨ࢁɿਓɺԬɿਓʣ w ݚڀΛ͍ͯ͠Δਓɺ։ൃΛ͍ͯ͠Δਓɺ྆ํ͕͍Δ w ݄ʹൃ ੨ࢁ Ԭ
!4 ͳͥϑΝογϣϯΛݚڀ͢Δͷ͔ w ୭͕ΛબͼɺΛணΔ ਓྨʹͱͬͯීวతͳςʔϚ w ϑΝογϣϯ࢈ۀڊେ ੈքͰஹԁͷࢢن
ήʔϜࢢɿஹԁɺөըࢢɿஹԁ
!5 ֶज़ݚڀʹ͓͚ΔϑΝογϣϯ w ༗ྗࠃࡍձٞͰϑΝογϣϯͷϫʔΫγϣοϓ͕։࠵ *$$7&$$7ɺ$713ɿը૾ೝࣝ ,%%ɿσʔλϚΠχϯά 3FD4ZTɿਪનγεςϜ
w ςʔϚଟ༷Խ͍ͯ͠Δ $713`ɿϑΝογϣϯʹ͓͚Δݕࡧɾಛදݱ &$$7`ɿࣗવݴޠ͔Βͷը૾Λੜ <&$$7`>
ࢲͨͪͷσʔλࢿ࢈
!7 ͷσʔλ w ԯຕҎ্ͷը૾ ΄΅ͯࣗࣾ͢ݿͰࡱӨ ౷Ұ͞ΕͨࡱӨ݅ • આ໌จɺૉࡐใɺֹۚͳͲɺ
ϒϥϯυͷखೖྗΑΔৄࡉͳ Ξϊςʔγϣϯ • ߪങϩά ͷʮങ͍ํʯʹؔ͢Δߴ࣭େྔͳσʔλ ϖʔδͷྫ
!8 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!9 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!10 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!11 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!12 ͜Ε·Ͱͷݚڀ w ίʔσΟωʔτͷఏҊ<*#*4.-`> ୯ҰͷΞΠςϜͰͳ͘ɺΞΠςϜͷू߹Λਪન͢Δ w ͷ$(දݱ w ܕ͔ΒίʔσΟωʔτΛݕࡧ
࢈ֶ࿈ܞͷ
!14 ࢈ֶ࿈ܞ ڞಉݚڀύʔτφʔ and more… େֶɾͦͷଞݚڀػؔͱͷڞಉݚڀΛਪਐ
!15 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ଟ༷ͳσʔλɺଟ༷ͳधཁ͕͋Δ ը૾ɺࣗવݴޠɺάϥϑɺ࣌ܥྻɺιʔγϟϧλάɺϥϯΩ ϯάɺΞΫηεϩάʜ ݕࡧɾਪનɺࣗಈλά͚ɺधཁ༧ଌɺ$(දݱɺҟৗݕɺ
%Ϗδϣϯ w 3%෦ॺઃཱॳɺओʹը૾ͷݚڀΛ͍ͬͯͨ ଞͷઐՈͱڠྗ͢Δ͜ͱͰɺݚڀΛ͛Δ
!16 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ޮՌతͳใ େֶͷݚڀऀͱ͕ٞͰ͖ΔϨϕϧͷݟɾٕज़ྗ Λ࣋ͭ͜ͱΛࣔ͢ ൃදΛ௨ֶͯ͡ձͷ࿐ग़Λ૿͠ɺ༏लͳֶੜʹ
Ϧʔν͢Δ w தظతͳࢹ࠲ʹཱͬͨݚڀ͕Ͱ͖Δ اۀͰͷݚڀظརӹʹͱΒΘΕɺࢹ͕ڱ͘ͳ Γ͍͢
!17 ڞಉݚڀΛ࣮ݱ͢Δ·Ͱ ͚ࣾͷίϛϡχέʔγϣϯ ͳͥ֎෦ػؔͱڠྗ͢Δͷ͔ ϦεΫʹݟ߹͏ϕωϑΟοτ͕͋Δ͜ͱΛઆ໌ ݸਓใͳͲɺ๏্ͷͷ֬ೝ ւ֎ͷ๏ͰอޢରͱͳΔՄೳੑͷ͋ΔσʔλΛআ֎
େྔͷσʔλΛɺޮΑ͘ɺ҆શʹ͢ (PPHMF#JH2VFSZͰσʔλΛऩूɾલॲཧ$MPVE4USBHFసૹ ఏܞઌͷେֶυϝΠϯʹݶͬͯΞΫηεΛڐՄ
!18 ·ͱΊ ϑΝογϣϯͷɺϏδωεɾݚڀͱʹ Γ্͕͍ͬͯΔɻ ࣾʹཷ·͍ͬͯΔଟ༷ͳσʔλΛ׆͔ͨ͢Ίɺ 3%ͷ෦ॺΛ্ཱͪ͛ͨɻ ݚڀྖҬ͕ଟذʹΔͨΊɺେֶͱͷ࿈ܞΛਪਐ ͍ͯ͠Δɻ