Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MIRU 2019 Lunch on Seminar
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Hayato Maki
July 31, 2019
Research
1
280
MIRU 2019 Lunch on Seminar
Event URL:
https://sites.google.com/zozo.com/miru2019/
Hayato Maki
July 31, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
110
Today was a Good Day: The Daily Life of Software Developers
hamaki
0
120
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1.1k
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
200
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
250
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
Remote sensing × Multi-modal meta survey
satai
4
710
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
LLMアプリケーションの透明性について
fufufukakaka
0
140
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
2025-11-21-DA-10th-satellite
yegusa
0
110
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
750
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
CoRL2025速報
rpc
4
4.2k
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
1
760
Designing for Timeless Needs
cassininazir
0
130
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
How STYLIGHT went responsive
nonsquared
100
6k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Six Lessons from altMBA
skipperchong
29
4.2k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Transcript
ϑΝογϣϯΛՊֶ͢ΔऔΓΈ ਅ༐ਓ ϦαʔναΠΤϯςΟετ גࣜձࣾ;0;0ςΫϊϩδʔζ
!2 ࣗݾհ גࣜձࣾ;0;0ςΫϊϩδʔζ ϦαʔναΠΤϯςΟετ ਅ༐ਓ ·͖ɹͱ dݱ৬ /"*45ใֶՊത࢜՝ఔमྃ ਪનγεςϜɺը૾ೝࣝͷݚڀ։ൃʹैࣄ
!3 ;0;0ͷ3%ମ੍ w 3%ͷઐ෦ॺʹਓ͕ॴଐʢ੨ࢁɿਓɺԬɿਓʣ w ݚڀΛ͍ͯ͠Δਓɺ։ൃΛ͍ͯ͠Δਓɺ྆ํ͕͍Δ w ݄ʹൃ ੨ࢁ Ԭ
!4 ͳͥϑΝογϣϯΛݚڀ͢Δͷ͔ w ୭͕ΛબͼɺΛணΔ ਓྨʹͱͬͯීวతͳςʔϚ w ϑΝογϣϯ࢈ۀڊେ ੈքͰஹԁͷࢢن
ήʔϜࢢɿஹԁɺөըࢢɿஹԁ
!5 ֶज़ݚڀʹ͓͚ΔϑΝογϣϯ w ༗ྗࠃࡍձٞͰϑΝογϣϯͷϫʔΫγϣοϓ͕։࠵ *$$7&$$7ɺ$713ɿը૾ೝࣝ ,%%ɿσʔλϚΠχϯά 3FD4ZTɿਪનγεςϜ
w ςʔϚଟ༷Խ͍ͯ͠Δ $713`ɿϑΝογϣϯʹ͓͚Δݕࡧɾಛදݱ &$$7`ɿࣗવݴޠ͔Βͷը૾Λੜ <&$$7`>
ࢲͨͪͷσʔλࢿ࢈
!7 ͷσʔλ w ԯຕҎ্ͷը૾ ΄΅ͯࣗࣾ͢ݿͰࡱӨ ౷Ұ͞ΕͨࡱӨ݅ • આ໌จɺૉࡐใɺֹۚͳͲɺ
ϒϥϯυͷखೖྗΑΔৄࡉͳ Ξϊςʔγϣϯ • ߪങϩά ͷʮങ͍ํʯʹؔ͢Δߴ࣭େྔͳσʔλ ϖʔδͷྫ
!8 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!9 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!10 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!11 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!12 ͜Ε·Ͱͷݚڀ w ίʔσΟωʔτͷఏҊ<*#*4.-`> ୯ҰͷΞΠςϜͰͳ͘ɺΞΠςϜͷू߹Λਪન͢Δ w ͷ$(දݱ w ܕ͔ΒίʔσΟωʔτΛݕࡧ
࢈ֶ࿈ܞͷ
!14 ࢈ֶ࿈ܞ ڞಉݚڀύʔτφʔ and more… େֶɾͦͷଞݚڀػؔͱͷڞಉݚڀΛਪਐ
!15 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ଟ༷ͳσʔλɺଟ༷ͳधཁ͕͋Δ ը૾ɺࣗવݴޠɺάϥϑɺ࣌ܥྻɺιʔγϟϧλάɺϥϯΩ ϯάɺΞΫηεϩάʜ ݕࡧɾਪનɺࣗಈλά͚ɺधཁ༧ଌɺ$(දݱɺҟৗݕɺ
%Ϗδϣϯ w 3%෦ॺઃཱॳɺओʹը૾ͷݚڀΛ͍ͬͯͨ ଞͷઐՈͱڠྗ͢Δ͜ͱͰɺݚڀΛ͛Δ
!16 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ޮՌతͳใ େֶͷݚڀऀͱ͕ٞͰ͖ΔϨϕϧͷݟɾٕज़ྗ Λ࣋ͭ͜ͱΛࣔ͢ ൃදΛ௨ֶͯ͡ձͷ࿐ग़Λ૿͠ɺ༏लͳֶੜʹ
Ϧʔν͢Δ w தظతͳࢹ࠲ʹཱͬͨݚڀ͕Ͱ͖Δ اۀͰͷݚڀظརӹʹͱΒΘΕɺࢹ͕ڱ͘ͳ Γ͍͢
!17 ڞಉݚڀΛ࣮ݱ͢Δ·Ͱ ͚ࣾͷίϛϡχέʔγϣϯ ͳͥ֎෦ػؔͱڠྗ͢Δͷ͔ ϦεΫʹݟ߹͏ϕωϑΟοτ͕͋Δ͜ͱΛઆ໌ ݸਓใͳͲɺ๏্ͷͷ֬ೝ ւ֎ͷ๏ͰอޢରͱͳΔՄೳੑͷ͋ΔσʔλΛআ֎
େྔͷσʔλΛɺޮΑ͘ɺ҆શʹ͢ (PPHMF#JH2VFSZͰσʔλΛऩूɾલॲཧ$MPVE4USBHFసૹ ఏܞઌͷେֶυϝΠϯʹݶͬͯΞΫηεΛڐՄ
!18 ·ͱΊ ϑΝογϣϯͷɺϏδωεɾݚڀͱʹ Γ্͕͍ͬͯΔɻ ࣾʹཷ·͍ͬͯΔଟ༷ͳσʔλΛ׆͔ͨ͢Ίɺ 3%ͷ෦ॺΛ্ཱͪ͛ͨɻ ݚڀྖҬ͕ଟذʹΔͨΊɺେֶͱͷ࿈ܞΛਪਐ ͍ͯ͠Δɻ