Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MIRU 2019 Lunch on Seminar
Search
Hayato Maki
July 31, 2019
Research
1
270
MIRU 2019 Lunch on Seminar
Event URL:
https://sites.google.com/zozo.com/miru2019/
Hayato Maki
July 31, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
95
Today was a Good Day: The Daily Life of Software Developers
hamaki
0
91
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1k
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
180
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
220
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
870
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
160
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
260
NLP2025参加報告会 LT資料
hargon24
1
350
2025年度 生成AIの使い方/接し方
hkefka385
1
760
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
690
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
240
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
3.9k
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
770
How GitHub (no longer) Works
holman
314
140k
BBQ
matthewcrist
89
9.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
How STYLIGHT went responsive
nonsquared
100
5.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Embracing the Ebb and Flow
colly
86
4.8k
Speed Design
sergeychernyshev
32
1.1k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Side Projects
sachag
455
43k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
ϑΝογϣϯΛՊֶ͢ΔऔΓΈ ਅ༐ਓ ϦαʔναΠΤϯςΟετ גࣜձࣾ;0;0ςΫϊϩδʔζ
!2 ࣗݾհ גࣜձࣾ;0;0ςΫϊϩδʔζ ϦαʔναΠΤϯςΟετ ਅ༐ਓ ·͖ɹͱ dݱ৬ /"*45ใֶՊത࢜՝ఔमྃ ਪનγεςϜɺը૾ೝࣝͷݚڀ։ൃʹैࣄ
!3 ;0;0ͷ3%ମ੍ w 3%ͷઐ෦ॺʹਓ͕ॴଐʢ੨ࢁɿਓɺԬɿਓʣ w ݚڀΛ͍ͯ͠Δਓɺ։ൃΛ͍ͯ͠Δਓɺ྆ํ͕͍Δ w ݄ʹൃ ੨ࢁ Ԭ
!4 ͳͥϑΝογϣϯΛݚڀ͢Δͷ͔ w ୭͕ΛબͼɺΛணΔ ਓྨʹͱͬͯීวతͳςʔϚ w ϑΝογϣϯ࢈ۀڊେ ੈքͰஹԁͷࢢن
ήʔϜࢢɿஹԁɺөըࢢɿஹԁ
!5 ֶज़ݚڀʹ͓͚ΔϑΝογϣϯ w ༗ྗࠃࡍձٞͰϑΝογϣϯͷϫʔΫγϣοϓ͕։࠵ *$$7&$$7ɺ$713ɿը૾ೝࣝ ,%%ɿσʔλϚΠχϯά 3FD4ZTɿਪનγεςϜ
w ςʔϚଟ༷Խ͍ͯ͠Δ $713`ɿϑΝογϣϯʹ͓͚Δݕࡧɾಛදݱ &$$7`ɿࣗવݴޠ͔Βͷը૾Λੜ <&$$7`>
ࢲͨͪͷσʔλࢿ࢈
!7 ͷσʔλ w ԯຕҎ্ͷը૾ ΄΅ͯࣗࣾ͢ݿͰࡱӨ ౷Ұ͞ΕͨࡱӨ݅ • આ໌จɺૉࡐใɺֹۚͳͲɺ
ϒϥϯυͷखೖྗΑΔৄࡉͳ Ξϊςʔγϣϯ • ߪങϩά ͷʮങ͍ํʯʹؔ͢Δߴ࣭େྔͳσʔλ ϖʔδͷྫ
!8 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!9 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!10 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!11 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!12 ͜Ε·Ͱͷݚڀ w ίʔσΟωʔτͷఏҊ<*#*4.-`> ୯ҰͷΞΠςϜͰͳ͘ɺΞΠςϜͷू߹Λਪન͢Δ w ͷ$(දݱ w ܕ͔ΒίʔσΟωʔτΛݕࡧ
࢈ֶ࿈ܞͷ
!14 ࢈ֶ࿈ܞ ڞಉݚڀύʔτφʔ and more… େֶɾͦͷଞݚڀػؔͱͷڞಉݚڀΛਪਐ
!15 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ଟ༷ͳσʔλɺଟ༷ͳधཁ͕͋Δ ը૾ɺࣗવݴޠɺάϥϑɺ࣌ܥྻɺιʔγϟϧλάɺϥϯΩ ϯάɺΞΫηεϩάʜ ݕࡧɾਪનɺࣗಈλά͚ɺधཁ༧ଌɺ$(දݱɺҟৗݕɺ
%Ϗδϣϯ w 3%෦ॺઃཱॳɺओʹը૾ͷݚڀΛ͍ͬͯͨ ଞͷઐՈͱڠྗ͢Δ͜ͱͰɺݚڀΛ͛Δ
!16 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ޮՌతͳใ େֶͷݚڀऀͱ͕ٞͰ͖ΔϨϕϧͷݟɾٕज़ྗ Λ࣋ͭ͜ͱΛࣔ͢ ൃදΛ௨ֶͯ͡ձͷ࿐ग़Λ૿͠ɺ༏लͳֶੜʹ
Ϧʔν͢Δ w தظతͳࢹ࠲ʹཱͬͨݚڀ͕Ͱ͖Δ اۀͰͷݚڀظརӹʹͱΒΘΕɺࢹ͕ڱ͘ͳ Γ͍͢
!17 ڞಉݚڀΛ࣮ݱ͢Δ·Ͱ ͚ࣾͷίϛϡχέʔγϣϯ ͳͥ֎෦ػؔͱڠྗ͢Δͷ͔ ϦεΫʹݟ߹͏ϕωϑΟοτ͕͋Δ͜ͱΛઆ໌ ݸਓใͳͲɺ๏্ͷͷ֬ೝ ւ֎ͷ๏ͰอޢରͱͳΔՄೳੑͷ͋ΔσʔλΛআ֎
େྔͷσʔλΛɺޮΑ͘ɺ҆શʹ͢ (PPHMF#JH2VFSZͰσʔλΛऩूɾલॲཧ$MPVE4USBHFసૹ ఏܞઌͷେֶυϝΠϯʹݶͬͯΞΫηεΛڐՄ
!18 ·ͱΊ ϑΝογϣϯͷɺϏδωεɾݚڀͱʹ Γ্͕͍ͬͯΔɻ ࣾʹཷ·͍ͬͯΔଟ༷ͳσʔλΛ׆͔ͨ͢Ίɺ 3%ͷ෦ॺΛ্ཱͪ͛ͨɻ ݚڀྖҬ͕ଟذʹΔͨΊɺେֶͱͷ࿈ܞΛਪਐ ͍ͯ͠Δɻ