Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MIRU 2019 Lunch on Seminar
Search
Hayato Maki
July 31, 2019
Research
1
280
MIRU 2019 Lunch on Seminar
Event URL:
https://sites.google.com/zozo.com/miru2019/
Hayato Maki
July 31, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
110
Today was a Good Day: The Daily Life of Software Developers
hamaki
0
110
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1.1k
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
190
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
250
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
430
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
340
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
CoRL2025速報
rpc
4
3.8k
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
110
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
Remote sensing × Multi-modal meta survey
satai
4
670
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
650
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
超高速データサイエンス
matsui_528
1
340
Featured
See All Featured
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Automating Front-end Workflow
addyosmani
1371
200k
Are puppies a ranking factor?
jonoalderson
0
2.6k
A designer walks into a library…
pauljervisheath
210
24k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
270
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
100k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
92
The agentic SEO stack - context over prompts
schlessera
0
580
Transcript
ϑΝογϣϯΛՊֶ͢ΔऔΓΈ ਅ༐ਓ ϦαʔναΠΤϯςΟετ גࣜձࣾ;0;0ςΫϊϩδʔζ
!2 ࣗݾհ גࣜձࣾ;0;0ςΫϊϩδʔζ ϦαʔναΠΤϯςΟετ ਅ༐ਓ ·͖ɹͱ dݱ৬ /"*45ใֶՊത࢜՝ఔमྃ ਪનγεςϜɺը૾ೝࣝͷݚڀ։ൃʹैࣄ
!3 ;0;0ͷ3%ମ੍ w 3%ͷઐ෦ॺʹਓ͕ॴଐʢ੨ࢁɿਓɺԬɿਓʣ w ݚڀΛ͍ͯ͠Δਓɺ։ൃΛ͍ͯ͠Δਓɺ྆ํ͕͍Δ w ݄ʹൃ ੨ࢁ Ԭ
!4 ͳͥϑΝογϣϯΛݚڀ͢Δͷ͔ w ୭͕ΛબͼɺΛணΔ ਓྨʹͱͬͯීวతͳςʔϚ w ϑΝογϣϯ࢈ۀڊେ ੈքͰஹԁͷࢢن
ήʔϜࢢɿஹԁɺөըࢢɿஹԁ
!5 ֶज़ݚڀʹ͓͚ΔϑΝογϣϯ w ༗ྗࠃࡍձٞͰϑΝογϣϯͷϫʔΫγϣοϓ͕։࠵ *$$7&$$7ɺ$713ɿը૾ೝࣝ ,%%ɿσʔλϚΠχϯά 3FD4ZTɿਪનγεςϜ
w ςʔϚଟ༷Խ͍ͯ͠Δ $713`ɿϑΝογϣϯʹ͓͚Δݕࡧɾಛදݱ &$$7`ɿࣗવݴޠ͔Βͷը૾Λੜ <&$$7`>
ࢲͨͪͷσʔλࢿ࢈
!7 ͷσʔλ w ԯຕҎ্ͷը૾ ΄΅ͯࣗࣾ͢ݿͰࡱӨ ౷Ұ͞ΕͨࡱӨ݅ • આ໌จɺૉࡐใɺֹۚͳͲɺ
ϒϥϯυͷखೖྗΑΔৄࡉͳ Ξϊςʔγϣϯ • ߪങϩά ͷʮങ͍ํʯʹؔ͢Δߴ࣭େྔͳσʔλ ϖʔδͷྫ
!8 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!9 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!10 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!11 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!12 ͜Ε·Ͱͷݚڀ w ίʔσΟωʔτͷఏҊ<*#*4.-`> ୯ҰͷΞΠςϜͰͳ͘ɺΞΠςϜͷू߹Λਪન͢Δ w ͷ$(දݱ w ܕ͔ΒίʔσΟωʔτΛݕࡧ
࢈ֶ࿈ܞͷ
!14 ࢈ֶ࿈ܞ ڞಉݚڀύʔτφʔ and more… େֶɾͦͷଞݚڀػؔͱͷڞಉݚڀΛਪਐ
!15 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ଟ༷ͳσʔλɺଟ༷ͳधཁ͕͋Δ ը૾ɺࣗવݴޠɺάϥϑɺ࣌ܥྻɺιʔγϟϧλάɺϥϯΩ ϯάɺΞΫηεϩάʜ ݕࡧɾਪનɺࣗಈλά͚ɺधཁ༧ଌɺ$(දݱɺҟৗݕɺ
%Ϗδϣϯ w 3%෦ॺઃཱॳɺओʹը૾ͷݚڀΛ͍ͬͯͨ ଞͷઐՈͱڠྗ͢Δ͜ͱͰɺݚڀΛ͛Δ
!16 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ޮՌతͳใ େֶͷݚڀऀͱ͕ٞͰ͖ΔϨϕϧͷݟɾٕज़ྗ Λ࣋ͭ͜ͱΛࣔ͢ ൃදΛ௨ֶͯ͡ձͷ࿐ग़Λ૿͠ɺ༏लͳֶੜʹ
Ϧʔν͢Δ w தظతͳࢹ࠲ʹཱͬͨݚڀ͕Ͱ͖Δ اۀͰͷݚڀظརӹʹͱΒΘΕɺࢹ͕ڱ͘ͳ Γ͍͢
!17 ڞಉݚڀΛ࣮ݱ͢Δ·Ͱ ͚ࣾͷίϛϡχέʔγϣϯ ͳͥ֎෦ػؔͱڠྗ͢Δͷ͔ ϦεΫʹݟ߹͏ϕωϑΟοτ͕͋Δ͜ͱΛઆ໌ ݸਓใͳͲɺ๏্ͷͷ֬ೝ ւ֎ͷ๏ͰอޢରͱͳΔՄೳੑͷ͋ΔσʔλΛআ֎
େྔͷσʔλΛɺޮΑ͘ɺ҆શʹ͢ (PPHMF#JH2VFSZͰσʔλΛऩूɾલॲཧ$MPVE4USBHFసૹ ఏܞઌͷେֶυϝΠϯʹݶͬͯΞΫηεΛڐՄ
!18 ·ͱΊ ϑΝογϣϯͷɺϏδωεɾݚڀͱʹ Γ্͕͍ͬͯΔɻ ࣾʹཷ·͍ͬͯΔଟ༷ͳσʔλΛ׆͔ͨ͢Ίɺ 3%ͷ෦ॺΛ্ཱͪ͛ͨɻ ݚڀྖҬ͕ଟذʹΔͨΊɺେֶͱͷ࿈ܞΛਪਐ ͍ͯ͠Δɻ