Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MIRU 2019 Lunch on Seminar
Search
Hayato Maki
July 31, 2019
Research
1
280
MIRU 2019 Lunch on Seminar
Event URL:
https://sites.google.com/zozo.com/miru2019/
Hayato Maki
July 31, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
110
Today was a Good Day: The Daily Life of Software Developers
hamaki
0
110
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1k
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
190
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
240
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
240
IMC の細かすぎる話 2025
smly
2
770
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
300
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.3k
投資戦略202508
pw
0
580
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
680
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
14
13k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
180
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
270
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
320
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
420
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
It's Worth the Effort
3n
187
29k
The Language of Interfaces
destraynor
162
25k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
For a Future-Friendly Web
brad_frost
180
10k
Transcript
ϑΝογϣϯΛՊֶ͢ΔऔΓΈ ਅ༐ਓ ϦαʔναΠΤϯςΟετ גࣜձࣾ;0;0ςΫϊϩδʔζ
!2 ࣗݾհ גࣜձࣾ;0;0ςΫϊϩδʔζ ϦαʔναΠΤϯςΟετ ਅ༐ਓ ·͖ɹͱ dݱ৬ /"*45ใֶՊത࢜՝ఔमྃ ਪનγεςϜɺը૾ೝࣝͷݚڀ։ൃʹैࣄ
!3 ;0;0ͷ3%ମ੍ w 3%ͷઐ෦ॺʹਓ͕ॴଐʢ੨ࢁɿਓɺԬɿਓʣ w ݚڀΛ͍ͯ͠Δਓɺ։ൃΛ͍ͯ͠Δਓɺ྆ํ͕͍Δ w ݄ʹൃ ੨ࢁ Ԭ
!4 ͳͥϑΝογϣϯΛݚڀ͢Δͷ͔ w ୭͕ΛબͼɺΛணΔ ਓྨʹͱͬͯීวతͳςʔϚ w ϑΝογϣϯ࢈ۀڊେ ੈքͰஹԁͷࢢن
ήʔϜࢢɿஹԁɺөըࢢɿஹԁ
!5 ֶज़ݚڀʹ͓͚ΔϑΝογϣϯ w ༗ྗࠃࡍձٞͰϑΝογϣϯͷϫʔΫγϣοϓ͕։࠵ *$$7&$$7ɺ$713ɿը૾ೝࣝ ,%%ɿσʔλϚΠχϯά 3FD4ZTɿਪનγεςϜ
w ςʔϚଟ༷Խ͍ͯ͠Δ $713`ɿϑΝογϣϯʹ͓͚Δݕࡧɾಛදݱ &$$7`ɿࣗવݴޠ͔Βͷը૾Λੜ <&$$7`>
ࢲͨͪͷσʔλࢿ࢈
!7 ͷσʔλ w ԯຕҎ্ͷը૾ ΄΅ͯࣗࣾ͢ݿͰࡱӨ ౷Ұ͞ΕͨࡱӨ݅ • આ໌จɺૉࡐใɺֹۚͳͲɺ
ϒϥϯυͷखೖྗΑΔৄࡉͳ Ξϊςʔγϣϯ • ߪങϩά ͷʮങ͍ํʯʹؔ͢Δߴ࣭େྔͳσʔλ ϖʔδͷྫ
!8 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!9 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!10 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!11 ͷσʔλ • ຊ࠷େڃͷϑΝογϣϯίʔ σΟωʔτڞ༗αΠτը૾ • ༻ΞΠςϜͷλά͚ Έ߹Θͤ • ϋογϡλάɺίϝϯτ
ࣗવݴޠ • ϑΥϩʔɾϑΥϩϫʔͷωοτ ϫʔΫάϥϑ ͷʮண͜ͳ͠ʯʹؔ͢ΔϚϧνϞʔμϧͳσʔλ
!12 ͜Ε·Ͱͷݚڀ w ίʔσΟωʔτͷఏҊ<*#*4.-`> ୯ҰͷΞΠςϜͰͳ͘ɺΞΠςϜͷू߹Λਪન͢Δ w ͷ$(දݱ w ܕ͔ΒίʔσΟωʔτΛݕࡧ
࢈ֶ࿈ܞͷ
!14 ࢈ֶ࿈ܞ ڞಉݚڀύʔτφʔ and more… େֶɾͦͷଞݚڀػؔͱͷڞಉݚڀΛਪਐ
!15 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ଟ༷ͳσʔλɺଟ༷ͳधཁ͕͋Δ ը૾ɺࣗવݴޠɺάϥϑɺ࣌ܥྻɺιʔγϟϧλάɺϥϯΩ ϯάɺΞΫηεϩάʜ ݕࡧɾਪનɺࣗಈλά͚ɺधཁ༧ଌɺ$(දݱɺҟৗݕɺ
%Ϗδϣϯ w 3%෦ॺઃཱॳɺओʹը૾ͷݚڀΛ͍ͬͯͨ ଞͷઐՈͱڠྗ͢Δ͜ͱͰɺݚڀΛ͛Δ
!16 ͳͥ࢈ֶ࿈ܞͳͷ͔ w ޮՌతͳใ େֶͷݚڀऀͱ͕ٞͰ͖ΔϨϕϧͷݟɾٕज़ྗ Λ࣋ͭ͜ͱΛࣔ͢ ൃදΛ௨ֶͯ͡ձͷ࿐ग़Λ૿͠ɺ༏लͳֶੜʹ
Ϧʔν͢Δ w தظతͳࢹ࠲ʹཱͬͨݚڀ͕Ͱ͖Δ اۀͰͷݚڀظརӹʹͱΒΘΕɺࢹ͕ڱ͘ͳ Γ͍͢
!17 ڞಉݚڀΛ࣮ݱ͢Δ·Ͱ ͚ࣾͷίϛϡχέʔγϣϯ ͳͥ֎෦ػؔͱڠྗ͢Δͷ͔ ϦεΫʹݟ߹͏ϕωϑΟοτ͕͋Δ͜ͱΛઆ໌ ݸਓใͳͲɺ๏্ͷͷ֬ೝ ւ֎ͷ๏ͰอޢରͱͳΔՄೳੑͷ͋ΔσʔλΛআ֎
େྔͷσʔλΛɺޮΑ͘ɺ҆શʹ͢ (PPHMF#JH2VFSZͰσʔλΛऩूɾલॲཧ$MPVE4USBHFసૹ ఏܞઌͷେֶυϝΠϯʹݶͬͯΞΫηεΛڐՄ
!18 ·ͱΊ ϑΝογϣϯͷɺϏδωεɾݚڀͱʹ Γ্͕͍ͬͯΔɻ ࣾʹཷ·͍ͬͯΔଟ༷ͳσʔλΛ׆͔ͨ͢Ίɺ 3%ͷ෦ॺΛ্ཱͪ͛ͨɻ ݚڀྖҬ͕ଟذʹΔͨΊɺେֶͱͷ࿈ܞΛਪਐ ͍ͯ͠Δɻ