Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Billion-scale Embedding for E-commerce Recommen...

Billion-scale Embedding for E-commerce Recommendation in Alibaba

Hayato Maki

July 29, 2020
Tweet

More Decks by Hayato Maki

Other Decks in Research

Transcript

  1. "CTUSBDU w 0CKFDUJWF$BMDVMBUFJUFNUPJUFN w 1SPQPTBM w 5PVTFTJEFJOGPSNBUJPO DBUFHPSZ  QSJDF

    ʜ GPS/PEF7FD w "MMFWJBUFDPMETUBSUQSPCMFN w &YQFSJNFOU w -JOL1SFEJDUJPO "NB[POEBUBTFUBOE UIFJSPXO5BPCBPEBUBTFU  w 7JTVBMJ[BUJPO
  2. #VJMEJOH*UFNJUFN(SBQI • Consider sequential information of behavior • D->A->B, B->E,

    D->E->F, … • Directed and weighted graph • Session-based • session = 1 hour time window • Noise Removal • Duration of the stay is less than 1 sec. • Over-active user: bought more than 1000 items or clicked 3500 times in three months • Updated item details: in the extreme case, a totally different item for the same identifier.
  3. /PEF&NCFEEJOH • Transition Probability 1. Generate item node sequence 2.

    Train skip-gram Based on DeepWalk’s framework
  4. &YQFSJNFOUBM&WBMVBUJPO Task: Link Prediction 1/3 of edeges are randomly removed,

    and predict it. Dataset Amazon and Taobao Side information L1 cat, Category, Shop, Brand, City, Spu, Style, Color, Gender, Age, Buying Power, Material
  5. 4ZTUFN%FQMPZNFOUBOE0QFSBUJPO w 6TFMPHTPGNPOUIT w "GUFSBOUJTQBNQSPDFTTJOH CJMMJPO FOUSJFTSFNBJOFE w (SBQIJTTQMJUJOUPTVCHSBQIT FBDI

    HSBQIIBTNJMMJPOOPEFT5PUBM OVNCFSPGHFOFSBUFETFRVFODFJT CJMMJPO w (16XBTVTFEUPUSBJOFNCFEEJOH w -FTTUIBOIPVSTUPEP MPHSFUSJFWBM BOUJTQBNQSPDFTTJOH  JUFNHSBQIDPOTUSVDUJPO TFRVFODF HFOFSBUJPO USBJOFNCFEEJOH JJ TJNJMBSJUZDPNQVUBUJPO
  6. .ZUIPVHIU w "OUJTQBNQSPDFTTJOHNBZCFVTFGVM  w 7JTVBMJ[BUJPOPGTJEFJOGPSNBUJPOJTJOUFSFTUJOH w 5SBJONJYUVSFSBUJPGPSFBDIJUFN 4PVOETUPPJOF⒏DJFOU w

    )PXXFMMXBTUIFDPMETUBSUQSPCMFNTPMWFE 5PPBNCJHVPVT w -JOLQSFEJDUJPOJTUPPFBTZCFDBVTFXFLOPXEBUBJTWFSZTQBSTF w 8IZOPUDPNQBSFUP%//CBTFENFUIPE  NBZCFUPPJOF⒏DJFOUGPSEFQMPZNFOU