Upgrade to Pro — share decks privately, control downloads, hide ads and more …

【ICML読み会】Unsupervised Deep Embedding for Cluste...

【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis

Avatar for Hayato Maki

Hayato Maki

July 16, 2016
Tweet

More Decks by Hayato Maki

Other Decks in Technology

Transcript

  1. ICML2016࿦จ঺հ Unsupervised Deep Embedding for Clustering Analysis Ross Girshick Jungian

    Xie Ali Farhadi University of Washington Facebook AI Research University of Washington ൃදऀ ਅ໦༐ਓ ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶݚڀՊ ത࢜ޙظ՝ఔ ஌ೳίϛϡχέʔγϣϯݚڀࣨ 2016/07/16 @NAIST
  2. ΫϥελϦϯάͷؔ࿈ݚڀ • k-means ٴͼ ࠞ߹ਖ਼ن෼෍Ϟσϧ(GMM) • ೖྗͷ࣍ݩ͕ߴ͍ͱࣦഊ͠΍͍͢ • ࣍ݩ࡟ݮͱΫϥελϦϯάΛಉ࣌ʹߦ͏ख๏ •

    ௿࣍ݩۭؒʹࣸ૾ɼࣸ૾ͨ͠ઌͰΫϥελϦϯά • ैདྷख๏͸ઢܗࣸ૾ͷΈ • εϖΫτϥϧɾΫϥελϦϯά • σʔλͷάϥϑߏ଄Λར༻͢Δख๏ • k-meansΑΓྑ͍݁ՌʹͳΔ͜ͱ͕ଟ͍ • ܭࢉྔ͕αϯϓϧ਺ͷ̎৐·ͨ͸̐৐ʹൺྫ
  3. ه߸ • σʔλ਺ɿ • σʔλɿ • Ϋϥελͷ਺ʢࣄલʹܾఆʣɿ • ࣸ૾ɿ •

    ɹ ͷ࣍ݩ <<< ͷ࣍ݩ • ࣸ૾ͷύϥϝλ ΛDNNͰֶश • ࣸ૾ઌͷσʔλɿ • ηϯτϩΠυʢΫϥελΛ୅ද͢Δ఺ʣɿ n { xi 2 X }n i=1 k zi = f✓( xi) ✓ {zi 2 Z}n i=1 {µj 2 Z}k i=1 zi = f✓( xi) zi = f✓( xi)
  4. ࣍ݩ࡟ݮ • ਂ૚ֶशΛར༻ͨ͠ඇઢܗͳ௿࣍ݩԽࣸ૾ f✓ : X ! Z { xi

    2 X }n i=1 zi = • ڭࢣͳֶ͠शͷͨΊɼަ ࠩݕূ๏ʹΑΔϋΠύʔύ ϥϝλͷௐ੔͸Ͱ͖ͳ͍ • ͦͷͨΊɼΑ͘࢖ΘΕΔ ωοτϫʔΫߏ੒Λ࢖༻ • ֤૚ͷ࣍ݩ͸
 (input)-500-500-2000-10 • શ݁߹ [van der Maaten, 09]
  5. ΫϥελׂΓ౰ͯ Soft Asignment • ࣸ૾͞Εͨσʔλ ͱηϯτϩΠυ ͷྨࣅ ౓ई౓ (soft assignment)


    
 
 
 
 
 
 ͸ɼ ͕̹൪໨ͷΫϥελʹೖΔ֬཰ͱͯ͠ ղऍͰ͖Δɽ qij = 1 + kzi µj0 k2/↵ (↵+1)/2 P j0 (1 + kzi µj0 k2/↵) (↵+1)/2 ↵ = 1 {zi 2 Z}n i=1 µj [van der Maaten & Hinton, 08] qij = 1 + kzi µj0 k2/↵ (↵+1)/2 P j0 (1 + kzi µj0 k2/↵) (↵+1)/2 {zi 2 Z}n i=1 • ڭࢣͳֶ͠शʹ͓͍ͯ͸ɼަࠩݕূ๏͸࢖͑ͳ͍ ͨΊɼ ʹݻఆɽ
  6. ࣮ݧ • σʔληοτ • ൺֱख๏ • k-means • LDGMI (εϖΫτϥϧɾΫϥελϦϯά)

    • SEC (εϖΫτϥϧɾΫϥελϦϯά) • Without back propagation
  7. ࣮૷ • Stacked Auto EncoderͷॳظԽ • ฏۉ0ɼඪ४ภࠩ0.01ͷਖ਼ن෼෍Λ࢖ͬͨ ཚ਺ͰॏΈΛॳظԽ • ֤૚͝ͱʹ50000ճ൓෮ʢ20%Dropoutʣ

    • Auto EncoderશମͰ100000ճ൓෮ͯ͠ fine tuning (Dropoutແ͠) • ϛχόοναΠζ=256 • ֶश཰=0.1 ←20000൓෮ຖʹ1/10
  8. ධՁج४ • Unsupervised Clustering Accuracy (ACC) • pi ɿਅͷϥϕϧ •

    qi ɿΞϧΰϦζϜ͕ग़ྗͨ͠ϥϕϧ • map()ɿϥϕϧ͔ΒΫϥελ΁ͷ࠷దͳϚοϐϯά
  9. ݁࿦ • ఏҊ๏͸ɼਂ૚ֶशΛར༻ͨ࣍͠ݩ࡟ݮʹΑΓΫϥ ελϦϯάͷੑೳΛ޲্ • ࣍ݩ࡟ݮͷύϥϝλͱΫϥελϦϯάͷ݁ՌΛಉ ࣌ʹ࠷దԽ • ΫϥελϦϯά࢑ఆతͳग़ྗͱ໨ඪ෼෍ͱͷKL μΠόʔδΣϯεΛଛࣦؔ਺ͱͯ͠όοΫϓϩύ

    ήʔγϣϯ • ैདྷ๏ΑΓߴਫ਼౓͔ͭߴ଎ʢܭࢉ࣌ؒ͸αϯϓϧ਺ ʹରͯ͠ઢܗʹൺྫʣɼσʔληοτඇґଘɼϋΠύʔ ύϥϝλඇґଘɼαϯϓϧ਺ͷෆۉҰੑʹରͯ͠ؤ݈