Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Today was a Good Day: The Daily Life of Softwar...
Search
Hayato Maki
November 20, 2019
Research
0
88
Today was a Good Day: The Daily Life of Software Developers
Hayato Maki
November 20, 2019
Tweet
Share
More Decks by Hayato Maki
See All by Hayato Maki
Billion-scale Embedding for E-commerce Recommendation in Alibaba
hamaki
0
93
論文紹介:Relaxed Softmax for PU Learning
hamaki
3
1k
MIRU 2019 Lunch on Seminar
hamaki
1
260
コーディネート整合性を考慮したカテゴリ間推薦
hamaki
0
1.2k
Regularization_The Element of Statical Learning
hamaki
0
180
Neural Activity During Sentence Processing as Reflected in Theta, Alpha, Beta, and Gamma Oscillations
hamaki
0
220
【ICML読み会】Unsupervised Deep Embedding for Clustering Analysis
hamaki
0
1.3k
Other Decks in Research
See All in Research
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
860
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
660
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.7k
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
380
業界横断 副業・兼業者の実態調査
fkske
0
200
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
3
120
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.1k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
230
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
270
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
330
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
110
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
620
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Visualization
eitanlees
146
16k
Embracing the Ebb and Flow
colly
86
4.8k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Scaling GitHub
holman
461
140k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Site-Speed That Sticks
csswizardry
10
720
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
760
Transcript
None
എܠ 3 ઌߦݚڀʹΑΔͱɺ৬ʹର͢Δຬ͕ߴ͍ιϑτΣ Ξ։ൃऀ 4%& ɺੜ࢈తͰྑ͍ίʔυΛॻ͘ɻ 4%&ʹɺ։ൃҎ֎ʹ༷ʑͳࣄ͕͋Δɻ
4%&ʹͱͬͯɺྑ͍ͱͲΜͳͩΖ͏͔ɻ 4%&ʹͱͬͯɺయܕతͳͱͲΜͳͩΖ͏͔ɻ
ߩݙ 4 4%&ʹͱͬͯͷྑ͍ɺయܕతͳΛੳ͢ΔͨΊͷ֓ ೦ϑϨʔϜϫʔΫΛ࡞ͨ͠ɻ .JDSPTPGUͰϑϧλΠϜͰಇ͘4%&ɺਓ͔Βಘͨ ΤϯέʔτௐࠪΛͱʹੳΛߦͬͨɻ Կʹ࣌ؒΛ͍ͬͯΔͱ͍͏ੳΛͱʹɺྑ͍ɺయ
ܕతͳΛఆྔతʹੳͨ͠ɻ ྑ͍Λయܕతʹ͢ΔͨΊͷΞυόΠεΛ༩͑ͨɻ
3FTFBSDI2VFTUJPOT 5 4%&ʹྑ͍ɺయܕతͳͱײͤ͡͞ΔཁҼԿ͔ɻ ·ͨɺͦΕΒͲͷΑ͏ʹӨڹ͍ͯ͠Δ͔ɻ ྑ͍ɺయܕతͳʹɺ4%&ͲͷΑ͏ͳ࣌ؒͷ͍ํ Λ͍ͯ͠Δ͔ बۀʹͲΜͳछྨ͕͋ΓɺྨͰ͖Δ͔
ڠಇʢϛʔςΟϯάͳͲʣྑ͍ɺయܕతͳʹͲͷ Α͏ʹӨڹ͢Δ͔
ઌߦݚڀ 6 4%&͕ίʔσΟϯάʹඅͨ࣌ؒ͠ 1FSSZ `$PEJOH (PODBMWFT `$PEJOH $PMMBCPMBUJPO *OGPSNBUJPO
4FFLJOH "TUSPNTLJT `$PEJOHBUNPTU ։ൃελΠϧίʔσΟϯά࣌ؒͷఆٛɺܭଌ๏ɺௐࠪͷλΠϛϯάʹ ΑΔࠩҟ͕ੜ͍ͯ͡ΔՄೳੑ͋Γ ίʔσΟϯά࣌ؒͷܭଌɺΞϯέʔτɺ؍ɺ࡞ۀϩάͳͲ༷ʑ
ઌߦݚڀ 7 ੜ࢈ੑʹӨڹ͢ΔཁҼɿதஅɺϝʔϧ ৬ʹର͢ΔຬʹӨڹ͢Δཁɿ৺ཧతͳঢ়ଶɺࣄͷָ͠͞ ຊݚڀɺશൠతͳຬͰͳ͘ࡢʹ͍ͭͯ๚Ͷ͍ͯΔ͕ઌߦݚ ڀͱҟͳΔ
ۈʹҹʹӨڹ͢ΔཁҼ w ͦͷ͕ͲΕ͘Β͍యܕత͔ w ઌߦݚڀͷؒͰໃ६ͨ݁͠Ռ͕ಘΒΕ͍ͯΔɻϧʔνϯϫʔΫ͕ଟ͍ ͱྑ͍ѱ͍
༧උ࣮ݧ 8 ຊ࣮ݧͰ༻͍ΔΞϯέʔτΛ࡞͢Δࡍͷࢀߟʹ͢ΔͨΊ ༷ʑͳ৬Ґͷ4%&ʹରͯ͠ແ࡞ҝʹίϯλΫτΛͱΓɺͷΠϯλʔ ωοτΛ࣮ࢪ લʢલճͷۈʣʹ͍ͭͯɺԿΛͲΕ͘Β͍࣌ؒߦ͔ͬͨਘͶͨ &ϝʔϧΧϨϯμʔΛ֬ೝ͠ͳ͕Β͑ͯΒͬͨɻ ৽ͨͳ͕ݟΒΕͳ͘ͳΔ·ͰඃݧऀΛՃɻ̓ਓͰऩଋ͕ͨ͠ɺ̍̌ ਓ·ͰՃͨ͠ɻ
ຊ࣮ݧΞϯέʔτͷߏ 9 ॴଐνʔϜɺ৬Ґɺ։ൃܦݧʹ͍ͭͯਘͶΔ ׆ಈͷϦετΛݟͤɺͦΕͧΕʹରͯ͠લʹͲΕ͘Β͍࣌ؒΛͬͨ ͔ਘͶΔɻϦετʹແ͍׆ಈΛͨ͠߹ࣗ༝هड़ લͷҹʹ͍ͭͯɺʮྑ͍ɾྑ͘ͳ͍ʯɺʮయܕతͳɾయܕత Ͱͳ͍ʯͷͲͪΒ͔ΛͦΕͧΕબΜͰΒ͏ ͦͷଞͷ࣭܈ɻલʹԿճதஅ͞Ε͔ͨɺෆཁͳϛʔςΟϯά͍͘ ͔ͭ͋ͬͨɺɻΞϯέʔτͷճ࣌ؒΛগͳ͘͢ΔͨΊɺͲͷ࣭ ඃݧऀͷˋ͔ΒճΛಘΒΕΔΑ͏ϥϯμϜʹදࣔͨ͠ɻ
ॴཁ࣌ؒͷதԝ ΧϨϯμʔɺϝʔϧɺࢽͳͲΛݟͳ͕Βճ͢ΔΑ͏ʹଅͨ͠
Ξϯέʔτͷૹ 10 ςετࢼߦͱͯ͠ɺ໊ʹΞϯέʔτΛૹ ܰඍͳมߋΛՃ͑ɺਓʹରͯ͠ΞϯέʔτΛૹ िʹਓͣͭɺϲ݄ʹΘͨͬͯૹ ճҎ্ड͚औΔ͜ͱ͋Γ͏Δ ࣮ࡍʹͷඃݧऀ͕ճҎ্ड৴ ɻ
Ξϯέʔτಗ໊ͰճՄೳ͕ͩɺͷඃݧऀ͕ݦ໊Ͱճ ेͳݕఆྗΛಘΔͨΊʹඞཁͳඃݧऀ໊ ݸͷճΛಘͨʢճɿʣɻ ճऀͷ৬ҐδϡχΞɿγχΞʹɿ ։ൃܦݧͷฏۉʢ NJO NBYʣ
ࣗ༝ճͷੳ 11 (SBOUFE5IFPSZʹج͍ͮͯੳ ࣭తௐࠪͰ͔ͭΘΕΔͷ ख࡞ۀͰճΛྨ͍ͯ͘͠Α͏ͳΠϝʔδ
݁Ռɿ࣭తੳ
݁Ռɿྑ͍ɾѱ͍ 13 ؆୯ͷͨΊɺʮྑ͍ʯҎ֎ͷճΛѱ͍ͱදه ݸͷҼࢠɺݸͷߴϨϕϧҼࢠΛಛఆ ճͷׂ߹(PPE#BE
7BMVF$SFBUJPO Ձ 14 ਐḿΛͩ͢ ίʔσΟϯάʹऔΓΉ ҙٛͷ͋ΔࣄΛ͢Δ
ݐઃతͳٞ ϛʔςΟϯάඞͣ͠ѱ͍ҹͰແ͍ ৽͍͜͠ͱΛֶͿɻ ଞਓΛॿ͚Δ ͕࣌ؒଟ͗͢Δͱѱҹʹస͡Δ
&⒏DJFOU6TFPG5JNF ༗ޮͳ࣌ؒͷ͍ํ 15 ظɾܭը௨ΓʹਐΉ ۓٸରԠѱҹΛ༩͑Δ ूதͯ͠ಇ͚Δ ಉ྅ʹΑΔΠϯλϥϓτɺڥϊΠζɺ։์తͳΦ ϑΟεڥѱҹɻ
͗͢ΔϛʔςΟϯάɻҰ͕ϛʔςΟϯάͰΊ ΒΕΔͱѱҹ
1FSDFQUJPO ֮ 16 ੜ࢈ੑʹର͢Δҹɺͦͷͷؾ కΊΓ͔Β͘ΔϓϨογϟʔ ۀ
17 యܕඇయܕత ׆ಈͦͷͷͰͳ͘ɺ࣌ؒͷ͍ํ ʹؔ͢Δظͱݱ࣮ͷΪϟοϓ͕ೝࣝ ʹେ͖͘Өڹ͍ͯ͠Δ ֎ଆͷ࢛͕֯ଆͷ࢛֯ʹӨڹ͢Δ ݁Ռɿయܕతͳ͔
18 ઃܭϑΣʔζ͔ɺίʔσΟϯάϑΣʔ ζ͔ 1SPKFDU1IBTF ϓϩδΣΫτͷఔ
19 /PNFFUJOHEBZɻΑ͘ײँ͞Ε͍ͯΔ ༵ 5ZQFPG8PSLEBZ ۈͷछྨ
20 ϛʔςΟϯάɺΠϯϑϥࣄɺτϨʔχϯά &YUFSOBM ֎෦ཁҼ Ͳ͜Ͱಇ͍͔ͨ -PDBUJPO ͍ͭͱҧ͏λεΫΛ͍ͯ͠Δ .BJO8PSL5BTL 1FSTPOBM ݸਓతͳࣄ
݁Ռɿྔతੳ
ྔతղੳ 22 యܕతͳɺͦ͏Ͱͳ͍ΑΓ౷ܭతʹ༏Ґʹ ྑ͍ʹͳΓ͍͢
ྔతղੳ 23 ҰฏۉͰ࣌ؒࠓಇ͍͍ͯΔʢɺฏۉ͕ٳܜʣ ྑ͍ɺయܕతͳ։ൃؔʹ͕͍ͬͨ࣌ؒ ίʔσΟϯάʹ͏࣌ؒɺ͍͍ͩͨલޙ
ۈͷΫϥελϦϯά 24
ۈͷΫϥελϦϯά 25 5FTUJOH%BZճ্࠷యܕతɻ̎൪ʹྑ͍ɻδϡχΞΫϥεͷ։ൃऀ͕ଟ͍ #VHpYJOH%BZδϡχΞΫϥεͷ։ൃऀ͕ଟ͍ $PEJOH%BZ࠷ྑ͍ɺ͔ͭओ؍తʹ࠷యܕత $PMMBCPSBUJPO%BZϝʔϧɺΠϯλϥϓγϣϯɺखॿ͚͕ଟ͍ɻγχΞ։ൃऀ͕ଟ͍ɻ .FFUJOH%BZϛʔςΟϯάͷɻฏۉͯ࣌ؒ͠Ҏ্
γχΞ։ൃऀ͕ଟ͍ɻ7BSJPVT%BZҎ֎Ͱ࠷ѱ͍ɻ 7BSJPVT%BZͦͷଞͷɻͬͱྫ֎తɻ
ϛʔςΟϯάͱதஅ 26 ෆඞཁɺ͍ϛʔςΟϯάۈͷҹΛѱԽͤ͞Δ ྑ͍ͱײ͡ΒΕͨͰ͢Βɺ༗ҙٛͳϛʔςΟϯάͱײ͡ΒΕׂͨ߹ׂڧ
ʮྑ͍ʯΛ૿͢ 27 ҰൠతʹɺதஅɾϛʔςΟϯάɾࣄ࡞ۀɾΠϯϑϥෆௐΛ࠷খݶʹ͢Δ͖ ։ൃΛओʹ୲͍ͯ͠ΔδϡχΞΫϥεͷ4%&ʹͱͬͯಛʹॏཁ ࠷ۙྲྀߦͷ։์తͳΦϑΟεͰͳ͘ɺਓͷಉ྅ͱγΣΞ͞ΕΔখ͍͞ΦϑΟε͕· ͍͠ɻ ࣗۈΛೝΊΔɻ/PONFFUJOH%BZΛ࡞ΔɻϛʔςΟϯάΛҰʹ·ͱΊΔɻ
ΤΩεύʔτൃݟɺࣝڞ༗ɺޮతͳϝʔϧγεςϜʹΑͬͯதஅΛ࠷খݶʹ͢Δɻ యܕతͳΛྑ͘͢Δ యܕతͰͳ͍Λྑ͘͢Δ
ࣄऀҙࣝूதͱڠۀͷؔ 28 ݸਓͷࣄ74νʔϜͷࣄͷϛʔςΟϯάτϨʔυΦϑ ίʔσΟϯάϑΣʔζʹ͓͚ΔϛʔςΟϯάɾதஅҹΛѱ͘͢Δ ઃܭϑΣʔζʹ͓͚ΔɾதஅҹΛྑ͘͢Δ ৬Ґ্͕͕Δ΄Ͳڠۀͷҹ͕ྑ͘ͳΔ ڠۀͷՁΛߴ͘͢Δ
ධՁγεςϜͷதʹɺଞͷνʔϜɾϓϩδΣΫτʢ044ؚΉʣΛॿ͚Δ͜ͱΛؚΊΔɻ ্࢘Ҏ֎͔ΒධՁ͞ΕΔγεςϜʹ͢Δɻ ϐΞɾϘʔφεΛ׆༻͢Δɻ ࣄऀҙࣝΛײͤ͡͞Δ͜ͱ͕ॏཁɻظɾܭըͱݱ࣮ͷဃΛখ͘͢͞Δɻ ֎෦ཁҼʢϛʔςΟϯάɺதஅʣͷίϯτϩʔϧ͕ॏཁɻ
݁ 29 ֎ཚཁҼΛ࠷খݶʹͯ͠ɺࣄऀҙࣝΛ࣋ͨͤΔ͜ͱ͕ॏཁɻ ܭըɾظ௨ΓʹਐΉͱҹ͕ྑ͘ͳΔ ίʔσΟϯάͷ࣌ؒΛ͘औΓɺதஅϛʔςΟϯά͕গͳ͍ͱ৬ʹ ର͢Δҹ͕ྑ͘ͳΔ ϛʔςΟϯάͷҹɺ։ൃͷϑΣʔζʹΑͬͯมΘΔ
ઃܭϑΣʔζͷϛʔςΟϯάΉ͠ΖҹΛྑ͘͢Δ