Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
720
Architectural Extensions
denyspoltorak
0
290
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
620
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
ぼくの開発環境2026
yuzneri
0
240
Oxlint JS plugins
kazupon
1
980
AI巻き込み型コードレビューのススメ
nealle
2
420
Package Management Learnings from Homebrew
mikemcquaid
0
230
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
160
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
MUSUBIXとは
nahisaho
0
140
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
8k
New Earth Scene 8
popppiees
1
1.5k
Site-Speed That Sticks
csswizardry
13
1.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
A Tale of Four Properties
chriscoyier
162
24k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Technical Leadership for Architectural Decision Making
baasie
2
250
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Practical Orchestrator
shlominoach
191
11k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]