Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
Fluid Templating in TYPO3 14
s2b
0
130
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1k
SourceGeneratorのススメ
htkym
0
200
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
Implementation Patterns
denyspoltorak
0
290
Oxlint JS plugins
kazupon
1
970
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
4 Signs Your Business is Dying
shpigford
187
22k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Building an army of robots
kneath
306
46k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Marketing to machines
jonoalderson
1
4.6k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]