Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
91
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
60
Other Decks in Programming
See All in Programming
CSC509 Lecture 02
javiergs
PRO
0
410
NetworkXとGNNで学ぶグラフデータ分析入門〜複雑な関係性を解き明かすPythonの力〜
mhrtech
3
1.2k
止められない医療アプリ、そっと Swift 6 へ
medley
1
130
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
210
ネイティブ製ガントチャートUIを作って学ぶUICollectionViewLayoutの威力
jrsaruo
0
140
10年もののAPIサーバーにおけるCI/CDの改善の奮闘
mbook
0
790
XP, Testing and ninja testing ZOZ5
m_seki
3
400
Building, Deploying, and Monitoring Ruby Web Applications with Falcon (Kaigi on Rails 2025)
ioquatix
3
1.3k
Django Ninja による API 開発効率化とリプレースの実践
kashewnuts
0
1.1k
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
190
CSC305 Lecture 03
javiergs
PRO
0
240
オープンソースソフトウェアへの解像度🔬
utam0k
3
280
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
It's Worth the Effort
3n
187
28k
Docker and Python
trallard
46
3.6k
How STYLIGHT went responsive
nonsquared
100
5.8k
Become a Pro
speakerdeck
PRO
29
5.5k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
KATA
mclloyd
32
15k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]