Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
450
認証・認可の基本を学ぼう後編
kouyuume
0
250
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
290
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
4.3k
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
130
愛される翻訳の秘訣
kishikawakatsumi
3
350
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
200
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
180
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
190
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
140
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
290
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
21
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
320
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
We Are The Robots
honzajavorek
0
120
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
200
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
130
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
sira's awesome portfolio website redesign presentation
elsirapls
0
91
Git: the NoSQL Database
bkeepers
PRO
432
66k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
29
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]