Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
470
MUSUBIXとは
nahisaho
0
130
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
710
CSC307 Lecture 08
javiergs
PRO
0
670
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.3k
Oxlintはいいぞ
yug1224
5
1.3k
AI & Enginnering
codelynx
0
110
Patterns of Patterns
denyspoltorak
0
1.4k
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
140
CSC307 Lecture 07
javiergs
PRO
0
550
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
470
Featured
See All Featured
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
The Cult of Friendly URLs
andyhume
79
6.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
4 Signs Your Business is Dying
shpigford
187
22k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
Speed Design
sergeychernyshev
33
1.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
It's Worth the Effort
3n
188
29k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]