Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
620
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
740
Data-Centric Kaggle
isax1015
2
780
2026年 エンジニアリング自己学習法
yumechi
0
140
Grafana:建立系統全知視角的捷徑
blueswen
0
330
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
ぼくの開発環境2026
yuzneri
0
240
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
Oxlint JS plugins
kazupon
1
970
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
58k
Making Projects Easy
brettharned
120
6.6k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
GraphQLとの向き合い方2022年版
quramy
50
14k
From π to Pie charts
rasagy
0
120
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]