Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
MUSUBIXとは
nahisaho
0
130
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
710
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Raku Raku Notion 20260128
hareyakayuruyaka
0
300
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
200
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.3k
Featured
See All Featured
Speed Design
sergeychernyshev
33
1.5k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
730
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
How to Talk to Developers About Accessibility
jct
2
130
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Thoughts on Productivity
jonyablonski
74
5k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]