Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
Architectural Extensions
denyspoltorak
0
290
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
190
ぼくの開発環境2026
yuzneri
0
240
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
100
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
130
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
740
CSC307 Lecture 09
javiergs
PRO
1
840
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
[SF Ruby Conf 2025] Rails X
palkan
1
760
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Speed Design
sergeychernyshev
33
1.5k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
The Invisible Side of Design
smashingmag
302
51k
Building the Perfect Custom Keyboard
takai
2
690
Tell your own story through comics
letsgokoyo
1
810
Faster Mobile Websites
deanohume
310
31k
Bash Introduction
62gerente
615
210k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]