Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
Basic Architectures
denyspoltorak
0
680
dchart: charts from deck markup
ajstarks
3
990
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
180
SourceGeneratorのススメ
htkym
0
200
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Claude Codeと2つの巻き戻し戦略 / Two Rewind Strategies with Claude Code
fruitriin
0
120
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
Featured
See All Featured
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
76
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Documentation Writing (for coders)
carmenintech
77
5.3k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Building Applications with DynamoDB
mza
96
6.9k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]