Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
500
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
730
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
130
AIコーディングエージェント(Manus)
kondai24
0
200
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
250
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
370
AIコーディングエージェント(NotebookLM)
kondai24
0
210
TestingOsaka6_Ozono
o3
0
170
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
2
220
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
370
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
Featured
See All Featured
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.7k
How to train your dragon (web standard)
notwaldorf
97
6.4k
30 Presentation Tips
portentint
PRO
1
160
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Faster Mobile Websites
deanohume
310
31k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
69
Crafting Experiences
bethany
0
18
Exploring anti-patterns in Rails
aemeredith
2
200
BBQ
matthewcrist
89
9.9k
A Tale of Four Properties
chriscoyier
162
23k
It's Worth the Effort
3n
187
29k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]