Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
97
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
71
Introduction to Git
harjinderhari
0
140
Introduction to Graph Databases
harjinderhari
0
170
DB2 SQL Query Tuning
harjinderhari
0
46
Other Decks in Programming
See All in Programming
いりゃあせ、PHPカンファレンス名古屋2025 / Welcome to PHP Conference Nagoya 2025
ttskch
1
240
PicoRubyと暮らす、シェアハウスハック
ryosk7
0
250
ISUCON14感想戦で85万点まで頑張ってみた
ponyo877
1
790
Внедряем бюджетирование, или Как сделать хорошо?
lamodatech
0
980
法律の脱レガシーに学ぶフロントエンド刷新
oguemon
4
610
GitHub CopilotでTypeScriptの コード生成するワザップ
starfish719
28
6.1k
はてなにおけるfujiwara-wareの活用やecspressoのCI/CD構成 / Fujiwara Tech Conference 2025
cohalz
3
3.2k
Оптимизируем производительность блока Казначейство
lamodatech
0
990
富山発の個人開発サービスで日本中の学校の業務を改善した話
krpk1900
3
300
Rubyでつくるパケットキャプチャツール
ydah
0
530
2025.01.17_Sansan × DMM.swift
riofujimon
2
670
Spring gRPC について / About Spring gRPC
mackey0225
0
170
Featured
See All Featured
Visualization
eitanlees
146
15k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Building an army of robots
kneath
302
45k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Building Adaptive Systems
keathley
39
2.4k
Why Our Code Smells
bkeepers
PRO
335
57k
Building Applications with DynamoDB
mza
93
6.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Building Your Own Lightsaber
phodgson
104
6.2k
Designing Experiences People Love
moore
139
23k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]