Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
99
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
84
Introduction to Git
harjinderhari
0
150
Introduction to Graph Databases
harjinderhari
0
200
DB2 SQL Query Tuning
harjinderhari
0
51
Other Decks in Programming
See All in Programming
技術同人誌をMCP Serverにしてみた
74th
0
280
ニーリーにおけるプロダクトエンジニア
nealle
0
130
地方に住むエンジニアの残酷な現実とキャリア論
ichimichi
5
1.3k
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
130
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
340
VS Code Update for GitHub Copilot
74th
1
310
生成AIコーディングとの向き合い方、AIと共創するという考え方 / How to deal with generative AI coding and the concept of co-creating with AI
seike460
PRO
1
330
すべてのコンテキストを、 ユーザー価値に変える
applism118
2
710
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
810
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
150
Gleamという選択肢
comamoca
6
760
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
840
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
YesSQL, Process and Tooling at Scale
rocio
173
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
BBQ
matthewcrist
89
9.7k
Raft: Consensus for Rubyists
vanstee
140
7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]