Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
91
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
60
Other Decks in Programming
See All in Programming
Building, Deploying, and Monitoring Ruby Web Applications with Falcon (Kaigi on Rails 2025)
ioquatix
4
2.3k
iOSでSVG画像を扱う
kishikawakatsumi
0
130
One Enishi After Another
snoozer05
PRO
0
130
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
9
1.7k
Le côté obscur des IA génératives
pascallemerrer
0
150
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
510
Go言語はstack overflowの夢を見るか?
logica0419
0
490
Flutterで分数(Fraction)を表示する方法
koukimiura
0
140
その面倒な作業、「Dart」にやらせませんか? Flutter開発者のための業務効率化
yordgenome03
1
130
他言語経験者が Golangci-lint を最初のコーディングメンターにした話 / How Golangci-lint Became My First Coding Mentor: A Story from a Polyglot Programmer
uma31
0
310
bootcamp2025_バックエンド研修_WebAPIサーバ作成.pdf
geniee_inc
0
120
CSC509 Lecture 05
javiergs
PRO
0
300
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Docker and Python
trallard
46
3.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Mobile First: as difficult as doing things right
swwweet
225
10k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
GitHub's CSS Performance
jonrohan
1032
470k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]