Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
Basic Architectures
denyspoltorak
0
680
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
dchart: charts from deck markup
ajstarks
3
990
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
140
Package Management Learnings from Homebrew
mikemcquaid
0
230
AgentCoreとHuman in the Loop
har1101
5
240
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
Architectural Extensions
denyspoltorak
0
290
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
Featured
See All Featured
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
94
We Have a Design System, Now What?
morganepeng
54
8k
GraphQLとの向き合い方2022年版
quramy
50
14k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
What's in a price? How to price your products and services
michaelherold
247
13k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
Why Our Code Smells
bkeepers
PRO
340
58k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]