Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
88
Introduction to Git
harjinderhari
0
150
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
56
Other Decks in Programming
See All in Programming
学習を成果に繋げるための個人開発の考え方 〜 「学習のための個人開発」のすすめ / personal project for leaning
panda_program
1
110
Dart 参戦!!静的型付き言語界の隠れた実力者
kno3a87
0
210
Flutter로 Gemini와 MCP를 활용한 Agentic App 만들기 - 박제창 2025 I/O Extended Seoul
itsmedreamwalker
0
150
Constant integer division faster than compiler-generated code
herumi
2
700
CSC305 Summer Lecture 12
javiergs
PRO
0
130
Understanding Ruby Grammar Through Conflicts
yui_knk
1
130
KessokuでDIでもgoroutineを活用する / Go Connect #6
mazrean
0
120
State of CSS 2025
benjaminkott
1
120
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
140
ソフトウェアテスト徹底指南書の紹介
goyoki
1
110
自作OSでDOOMを動かしてみた
zakki0925224
1
1.4k
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
890
Featured
See All Featured
How to Ace a Technical Interview
jacobian
279
23k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
570
Speed Design
sergeychernyshev
32
1.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
900
GitHub's CSS Performance
jonrohan
1031
460k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Docker and Python
trallard
45
3.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]