Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
Raku Raku Notion 20260128
hareyakayuruyaka
0
320
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.3k
CSC307 Lecture 07
javiergs
PRO
1
550
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
Patterns of Patterns
denyspoltorak
0
1.4k
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Claude Codeと2つの巻き戻し戦略 / Two Rewind Strategies with Claude Code
fruitriin
0
130
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
Are puppies a ranking factor?
jonoalderson
1
2.7k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
How to Ace a Technical Interview
jacobian
281
24k
Between Models and Reality
mayunak
1
190
Embracing the Ebb and Flow
colly
88
5k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
The Curse of the Amulet
leimatthew05
1
8.6k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]