Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
100
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
150
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
5
2k
Integrating WordPress and Symfony
alexandresalome
0
150
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
110
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
2
680
なあ兄弟、 余白の意味を考えてから UI実装してくれ!
ktcryomm
11
11k
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
230
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.3k
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
400
React Native New Architecture 移行実践報告
taminif
1
150
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
310
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
0
510
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Speed Design
sergeychernyshev
33
1.4k
Designing Experiences People Love
moore
143
24k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Typedesign – Prime Four
hannesfritz
42
2.9k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]