Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
90
Introduction to Git
harjinderhari
0
150
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
58
Other Decks in Programming
See All in Programming
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
320
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
110
Ruby Parser progress report 2025
yui_knk
1
450
CloudflareのChat Agent Starter Kitで簡単!AIチャットボット構築
syumai
2
500
「手軽で便利」に潜む罠。 Popover API を WCAG 2.2の視点で安全に使うには
taitotnk
0
860
Improving my own Ruby thereafter
sisshiki1969
1
160
rage against annotate_predecessor
junk0612
0
170
HTMLの品質ってなんだっけ? “HTMLクライテリア”の設計と実践
unachang113
4
2.9k
Laravel Boost 超入門
fire_arlo
3
220
AIでLINEスタンプを作ってみた
eycjur
1
230
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
390
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
530
Featured
See All Featured
Fireside Chat
paigeccino
39
3.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Speed Design
sergeychernyshev
32
1.1k
Designing for humans not robots
tammielis
253
25k
It's Worth the Effort
3n
187
28k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]