Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
210
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
Querying Design System デザインシステムの意思決定を支える構造検索
ikumatadokoro
1
1.2k
AI時代もSEOを頑張っている話
shirahama_x
0
120
Promise.tryで実現する新しいエラーハンドリング New error handling with Promise try
bicstone
3
660
例外処理を理解して、設計段階からエラーを見つけやすく、起こりにくく #phpconfuk
kajitack
12
6.3k
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
320
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
180
Flutterチームから作る組織の越境文化
findy_eventslides
0
530
TypeScript 5.9で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
310
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
450
ゼロダウンタイムでミドルウェアの バージョンアップを実現した手法と課題
wind111
0
210
How Software Deployment tools have changed in the past 20 years
geshan
0
590
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
460
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Context Engineering - Making Every Token Count
addyosmani
9
410
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
680
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Code Reviewing Like a Champion
maltzj
527
40k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
940
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Producing Creativity
orderedlist
PRO
348
40k
Designing for humans not robots
tammielis
254
26k
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]