Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommendation Engine for wide transactions
Search
harjinder-hari
June 09, 2017
Programming
0
100
Recommendation Engine for wide transactions
harjinder-hari
June 09, 2017
Tweet
Share
More Decks by harjinder-hari
See All by harjinder-hari
Coding For Cloud
harjinderhari
0
92
Introduction to Git
harjinderhari
0
160
Introduction to Graph Databases
harjinderhari
0
220
DB2 SQL Query Tuning
harjinderhari
0
61
Other Decks in Programming
See All in Programming
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
740
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.4k
CSC307 Lecture 09
javiergs
PRO
1
840
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
ぼくの開発環境2026
yuzneri
0
240
CSC307 Lecture 06
javiergs
PRO
0
690
AgentCoreとHuman in the Loop
har1101
5
240
Fragmented Architectures
denyspoltorak
0
160
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
94
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Six Lessons from altMBA
skipperchong
29
4.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
How GitHub (no longer) Works
holman
316
140k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
76
Transcript
Rec Sys - wide transactions Harjinder Mistry Red Hat |
@hmistry
Agenda 1. RecSys - 2 min primer 2. Problem -
Definition 3. Challenges in Standard Approaches 4. Our approach & architecture
RecSys examples
Basic terminologies user-item matrix explicit vs implicit feedback — user-user
— user-item — item-item image source
Frequent Pa!ern mining Applications — Customer Analysis — Brick-and-mortar retail
— Handling cold-start situation — Retrieval
Frequent Pa!ern mining Algorithms — apriori — FP Growth
openshi!.io
Helping developers become more efficient recommendations on packages recommendations on
the stack
Input data Projects/stacks - from code repositories — Java (pom.xml)
— Node.js (packages.json) — Python (requirements.txt)
spark, elastic cloud compute.... cool - let's rock
developers are amazing - but, of course
Wide transactions - challenges — existing methods didn't work —
time to train was huge — memory issues
As a self-serve platform, turnaround time as important as accuracy
Matrix Factorization is fast image source
Let's use matrix factorization (ALS) to generate frequent pa!erns
Step 1: Train ALS model
Step 2: Generate initial seed: random candidate set
Step 3: Find recommended product(package)
Step 4: Add it to the frequent pa!ern list and
continue
None
Why not deep learning?
Code, Slides and Contact ____ Code will be open-sourced soon!
Harjinder Mistry email:
[email protected]