Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的因果推論勉強会 第4回
Search
Hikaru Goto
August 27, 2016
Research
0
1.3k
統計的因果推論勉強会 第4回
経営学系統計学エンドユーザーのための統計的因果推論勉強会の第4回目です。
Hikaru Goto
August 27, 2016
Tweet
Share
More Decks by Hikaru Goto
See All by Hikaru Goto
統計的因果推論勉強会第5回
hikaru1122
0
2.4k
R実習 2016年9月25日
hikaru1122
1
2.5k
統計的因果推論勉強会 第3回
hikaru1122
0
2k
統計的因果推論勉強会 第2回
hikaru1122
0
2k
Other Decks in Research
See All in Research
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
220
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
300
CoRL2024サーベイ
rpc
1
1.2k
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
270
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
210
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
930
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
120
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
820
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
170
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
22
4.9k
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
180
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
137
6.7k
Building Your Own Lightsaber
phodgson
103
6.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Site-Speed That Sticks
csswizardry
2
190
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Done Done
chrislema
182
16k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Thoughts on Productivity
jonyablonski
68
4.4k
GitHub's CSS Performance
jonrohan
1031
460k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Why Our Code Smells
bkeepers
PRO
335
57k
Transcript
ܦӦֶܥ ౷ܭֶΤϯυϢʔβʔͷͨΊͷ ౷ܭతҼՌਪษڧձ ୈ4ճ 20168݄27 @hikaru1122 1
ษڧձͷϞοτʔ • ʮհೖʯ͍ͨ͠ͳΒɺҼՌਪͷํ๏Λʹ͚ͭΑ͏ɻ • ҼՌޮՌΛਪఆ͢Δํ๏ΛֶͿɻ • ֶతͳ͜ͱʹߦ͔ͳ͍ɻ πʔϧͱͯ͠ʹ͚ͭΔɻ 2
ຊͷൣғ • ٶຊɹୈ4ষɹ53ʙ73ท • ຊɹୈ3ষʮIPW ਪఆྔʯ 69ʙ74ท 3
෮श • ࣄ࣮, ճؼੳɼҼՌޮՌɼަབྷɼڞมྔɼڧ͘ແࢹͰ͖Δ ׂΓͯ݅ɼείΞ • ాʢ2014ʣͷୈ16ষʙ17ষ෮शʹͳΔɻ 4
ٶຊɹୈ4ষ • ٶຊͷωλຊͷஶऀʢJudea Pearlʣɻ • 4ষ5ষͷཧతͳ४උͩͱࢥ͏ɻࢲ ͨͪʹେ͖ؔ͘͠ͳ͍ɻ • ͍ͬͯ͏͔ɼαούϦΘ͔Γ·ͤΜɻ 5
Θʔ͍ • ֶతʹ͓ख্͛ɻ • ·ͨڭ͑Λ͍ʹߦ͖·͢ʢʼU༷ʣɻ 6
ٶຊͷ༻ޠͷ֬ೝ • DAG ͰҼՌతҙຯ͚͕ͮՄೳͳͷΛҼՌμΠΞάϥϜͱݺͿ ʢ75ทʣɻ • DAG ͦͷͷ७ਮͳ֬Ϟσϧʢ62ทʣɻ • Ϛϧίϑੑʹۄಥ͖ͷΠϝʔδɻ
લͷঢ়ଶͰ࣍ͷঢ়ଶ͕ܾ·Δʢ;ʔΜʣɻ • ͖݅ಠཱ 7
ͳΜͰ͖݅ಠཱ͕େͳͷʁ • Γ͍ͨͷݪҼม͕݁Ռมʹ༩͑ΔӨڹɻ • ݪҼม݁ՌมʹӨڹΛ͋ͨ͑ΔͷʢަབྷҼࢠʣͷӨڹ ΛऔΓআ͍ͯɼόΠΞεͳ͘ҼՌޮՌΛਪఆ͍ͨ͠ɻ • ަབྷҼࢠͷӨڹΛίϯτϩʔϧͯ͠ɼͦΕͰͳ͓ҼՌޮՌ͕ ೝΊΒΕΔ͔Ͳ͏͔ΛΓ͍ͨɻ 8
ͦ͜ͰࠓίϨɻ • Pearl, Glymour and Jewell(2016) • ҼՌϞσϧσʔλ͕ੜ͞ΕΔϝΧ χζϜͰ͋Δɻ 9
ҼՌμΠΞάϥϜͷجຊ3ύλʔϯ • ࿈ʢchainʣɼذʢforkʣɼ߹ྲྀʢcolliderʣ • ͲΕ͕ͲΕʹӨڹΛ༩͍͑ͯΔ͔ΠϝʔδͰ͖ΕOKͰɻ • ࣍ճʢٶຊ ୈ5ষʣͷཧղʹͱͯେࣄ 10
࿈ʢchainʣ • Xֶ͕ߍͷࢿۚɼY͕ςετͷɼZ͕߹֨ • YΛҰఆͳʹ੍ݶͰ͖ΔͳΒɼXͱZͲΜͳΛͱͬͯ OKʢ͖݅ಠཱʣ 11
ذʢforkʣ • X͕ؾԹɼY͕ΞΠεΫϦʔϜച্ɼZ͕൜ࡑ • YͱZ͚ͩݟͨΒɼ૬͕ؔ͋ΔͧɻY͔ΒZͷҼՌޮՌ͋Δͷ͔ ͳʁ 12
ذʢforkʣ • YͱZʹٖ૬ؔͷڪΕ͕͋Δɻ • XΛ੍ݶͯ͠ɼYͱZͷ૬ؔΛݟΕΑ͍ɻ • ͏͜ͷखͷେৎͰ͢Ͷʂ 13
߹ྲྀʢcolliderʣ • Pearl͞ΜΒʹΑΔͱͱͬͯେࣄͳܗΒ͍͠ʢextremely important to the study of causalityʣ 14
߹ྲྀʢcolliderʣ • ͢Ͱʹࢲͨͪ͜ͷة͏͞Λ͍ͬͯ·͢ʢલճͬͨʣɻ • ZΛҰఆʹͨ͠ΒɼXͱYʹ૬͕ؔੜͯ͡͠·͏ɻ 15
ࠓͷٶຊ·ͱΊ • ҼՌͷߏΛਤͰॻ͘ͱɼ͝རӹ͋Δ ͔Αɻ • ෮शͱͯ͠ɼؠσʔλαΠΤϯεୈ3 רͷ28ʙ38ทʢྛɾࠇ 2016ʣ͕ײ ಈతʹΘ͔Γ͍͢ɻ •
͞Βʹ39ʙ46ทΛಡΜͰ͓͘ͱɼ࣍ճ ͷେࣄͳͱ͜Ζ͕ཧղͰ͖ΔʢͨͿ Μʣɻ 16
ຊɹୈ3ষʮIPWਪఆྔʯ • ΑΓΑ͘ҼՌޮՌͷਪఆΛܭࢉͰ͖Δํ๏ɻ • ࠓ࣍ͷެ͚ࣜͩͰOKɻ ɹ,ɹ • 2ͭΛҾ͖ࢉ͢ΕΑ͍ɻ 17
Ͳ͜Λܭࢉ͍ͯ͠Δͷ͔ʁ • ATEɿʢᶃʴᶄʣͷฏۉ ʔʢᶅʴᶆʣͷฏۉ • ATTͷ߹ผͷࣜʹͳΔɻ • ͜ΕҎ্ઌʢDRਪఆྔʣʹਐΈ·ͤΜɻ 18
IPWਪఆྔɹܭࢉͷ࣮ࡍ • ʮҼՌޮՌͷਪఆʂRͰ࣮ફ - είΞɼϚονϯάɼIPW ਪఆྔ -ʯ • ʮؠDS3αϙʔτϖʔδʯ •
ʮؠσʔλαΠΤϯεvol.3ͷσʔλͰ༡΅͏ʯ • 3ͭΊ͔ͳΓRʹ׳Εͯͳ͍ͱ͍͠ɻ • 1ͭΊͱ2ͭΊ͕ཧղͰ͖ΔΑ͏ʹͳΖ͏ɻ 19
IPWਪఆྔΛ༻͍ͨจ • ຊޠͰগͳ͍ɻӳޠͰະௐࠪɻ • ࠓ࣍ͷ2ຊɻ • ಛఆอ݈ࢦಋͷ༧հೖࢪࡦͷޮՌʹؔ͢ΔݚڀʢੴΒ 2013ʣ • ࣾձతݽཱͱϥΠϑΠϕϯτͷؔ࿈ʢࡾ୩
2015ʣ 20
ੴΒʢ2013ʣ SAS༻ • ʮϝλϘରࡦʢ݈ͱอ݈ࢦಋʣͬͯΈͨʯ • ʮड͚ͨਓͱड͚ͳ͔ͬͨਓͷҧ͍Λݟ͍ͨʯ • ʮ͍Ζ͍ΖվળͰ͖ͨΑʂʯ • ड͚ͨਓ924ਓɼड͚ͳ͔ͬͨਓ3128ਓ
• ϚονϯάΛͨ͠Βଟ͘ͷσʔλΛࣺͯΔ͜ͱʹͳΔͷͰIPWਪ ఆྔΛ༻͍ͨͷ͔ͳʁ 21
ࡾ୩ʢ2015ʣ ༻ιϑτෆ໌ • ʮࣾձతݽཱʹͲͷΑ͏ͳϥΠϑΠϕϯτ͕ؔ࿈͔ͨ͠ΛΓ ͍ͨʯ • ʮWebௐࠪैདྷͷํ๏ΑΓόΠΞε͕͋Δ͔Βௐ͍ͨ͠ʯ • ʮͦ͜Ͱٯ֬ॏΈ͚๏Λ͓͏ʂʯ •
ͻΐͬͱͯ͠ɼຊୈ6ষͷ༰Ͱʂʁ 22
JGSS 23
JGSS 24
࣍ճ༧ࠂ • ٶຊ ୈ5ষɹόοΫυΞج४ • ຊ ୈ4ষɹ4.1ʙ4.3 ͱ 4.7 •
ؠDS vol.3 ͷ28ʙ48ทɼ62ʙ90ท͕ಡΈ͍͢Ͱ͢ɻ • ςΫχΧϧͳʹ໎͍ࠐΉҰาखલ͔ʂʁ • ܦӦֶͷҰྲྀδϟʔφϧSMJʹܝࡌ͞Εͨ౷ܭతҼՌਪͷߟ ΛಡΜͰɼཱͪҐஔΛ֬ೝɻ 25
ࢀߟจݙ • Pearl, J., Glymour, M. and Jewell, N. P.
(2016). Causal Inference in Statistics: A Primer. John Wiley & Sons. • ੴળथ, ࠓҪതٱ, தඌ༟೭, ᜊ౻૱, ా٢࣏. (2013). ಛఆอ݈ࢦಋͷ༧հೖࢪࡦͷޮՌʹؔ͢Δݚڀ: େنσʔλϕʔεΛ༻ͨ͠είΞʹΑΔҼՌੳ. ް ੜͷࢦඪ, 60(5), 1-6. 26
ࢀߟจݙ • খౡོɾࢁຊক࢙(2013). ExcelͰֶͿڞࢄߏੳͱ άϥϑΟΧϧϞσϦϯά. ΦʔϜࣾ. • ྛַɾࠇֶ(2016). ૬ؔͱҼՌͱؙͱҹͷͳ͠ɼؠ σʔλαΠΤϯεɼvol.3ɼ28ʙ48.
27
ࢀߟจݙ • ྛޫ. (2012). JGSS ౷ܭੳηϛφʔ 2011-είΞɾ ΣΠςΟϯά๏Λ༻͍ΔҼՌੳ. ຊ൛૯߹తࣾձௐࠪڞ ಉݚڀڌݚڀจू,
(12), 107ʙ127. • ਸ(2010). ௐࠪ؍σʔλͷ౷ܭՊֶɹҼՌਪɾબ όΠΞεɾσʔλ༥߹. ؠॻళ. 28
ࢀߟจݙ • ਸ(2016). ౷ܭతҼՌޮՌͷجૅɼؠσʔλαΠΤϯ εɼvol.3ɼ62ʙ90. • ࡾ୩ΔΑ. (2015). ࣾձతݽཱͱϥΠϑΠϕϯτͷؔ࿈: είΞ๏ʹΑΔ
Web ௐࠪσʔλੳ͔Β. ཾ୩େֶࣾձ ֶ෦لཁ= Bulletin of the Faculty of Sociology, Ryukoku University, (47), 58-69. 29
ࢀߟจݙ • ٶխາ(2004). ౷ܭతҼՌਪʔճؼੳͷ৽͍͠Έ ʔ. ேॻళ. 30