Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的因果推論勉強会第5回
Search
Hikaru Goto
October 29, 2016
Research
0
2.4k
統計的因果推論勉強会第5回
経営学系統計エンドユーザーのための統計的因果推論勉強会の第5回目です。これは公開用です。
Hikaru Goto
October 29, 2016
Tweet
Share
More Decks by Hikaru Goto
See All by Hikaru Goto
R実習 2016年9月25日
hikaru1122
1
2.5k
統計的因果推論勉強会 第4回
hikaru1122
0
1.4k
統計的因果推論勉強会 第3回
hikaru1122
0
2k
統計的因果推論勉強会 第2回
hikaru1122
0
2.1k
Other Decks in Research
See All in Research
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
160
ラムダ計算の拡張に基づく 音楽プログラミング言語mimium とそのVMの実装
tomoyanonymous
0
440
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
500
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
100
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
140
rtrec@dbem6
myui
6
710
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
370
Ad-DS Paper Circle #1
ykaneko1992
0
3.9k
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
190
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
330
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
200
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
11
3.5k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
23
1.5k
RailsConf 2023
tenderlove
30
1.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
23
2.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Embracing the Ebb and Flow
colly
85
4.6k
The Language of Interfaces
destraynor
157
24k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Scaling GitHub
holman
459
140k
Transcript
ܦӦֶܥ ౷ܭΤϯυϢʔβʔͷͨΊͷ ౷ܭతҼՌਪ ษڧձ ୈ5ճ 201610݄29 @hikaru1122 1
ษڧձͷϞοτʔ • ݚڀྗΛΞοϓ͠Α͏ɻ • ҼՌਪͷߟ͑ํɾ͍ํΛʹ͚ͭΑ͏ɻ • ֶతͳ͜ͱʹߦ͔ͳ͍ɻ 2
ຊͷൣғ • ٶຊɹୈ5ষ 81ʙ88ทʮόοΫυΞج४ʯ • ຊɹୈ4ষʮڞมྔબͱແࢹͰ͖ͳ͍ܽଌ 3
ຊͷత • ౷ܭతҼՌਪ͕ٻΊΒΕΔ݅ΛΔɻ • ҼՌޮՌΛٻΊΔͨΊͷڞมྔͷબͼํΛΔɻ • R ʹগ͠׳ΕΔɻ 4
ࠓͷ͓ଋ • ͕ݪҼมʢׂɾׂॲཧʣ • ͕݁Ռม • ͕ڞมྔʢަབྷҼࢠʣ 5
ͳͥڞมྔʹ͢Δͷ͔ʁ • ͔Β ͷҼՌޮՌΛΓ͍ͨͷʹɼଞͷཁૉ ͕มͳӨڹΛٴ΅͍ͯ͠Δ͔͠Εͳ͍ɻ • ͦΕΛίϯτϩʔϧͯ͠ɼ ͷ͚ؔͩΛ Γ͍ͨʂ 6
7
ࠓͷٶຊʮόοΫυΞج४ʯ • ճؼੳͷͱ͖ɼೖ͖͢આ໌มΛஅͰ͖ ΔΑ͏ʹͳΔɻ • όοΫυΞج४Λຬͨͨ͠มΛ͑ɼٖ૬ؔ ΛίϯτϩʔϧͰ͖Δɻຬ͍ͨͯ͠ͳ͍มΛ ͑ɼຊདྷͷҼՌޮՌ͕Θ͔Βͳ͘ͳΔɻ 8
όοΫυΞج४1 ࠓͷٶຊ͜Ε͚ͩͰेͰ͢ɻ • ΑΓ্ྲྀʹ͋Δɻதؒʹ͋Δͷμϝɻ • ͱ ͷ߹ྲྀͰͳ͍ɻ •
Λܦ༝͠ͳ͍ҹͰ ʹӨڹ͍ͯ͠Δɻ 1 ٶຊ 82,85ทͱྛɾࠇʢ2016ʣΛࢀߟʹ࡞ɻΑΓݫີͳఆٛٶຊΛࢀরͷ͜ͱɻ 9
ճؼੳΛ͢Δͱ͖ʹେͳ͜ͱ • ҼՌߏΛਤʹͯ͠ඳ͍ͯΈΔɻ • ੳʹ͍͍ͨݪҼมҎ֎ͷม͕όοΫυΞ ج४Λຬ͔ͨ͢ݕ౼͢Δɻ • ੳΛ࣮ߦʂ 10
όοΫυΞج४Λຬͨ͢ ͲΕʁ2 2 ྛɾࠇʢ2016ʣ͔ΒҾ༻ɻ͑ͱৄ͍͠ղઆͦͪΒΛࢀরɻ 11
12
13
ࠓͷຊʮڞมྔͷબʯ • ڞมྔʹείΞΛٻΊΔͱ͖ʹ͏આ໌ม • ݪҼมͱ݁ՌมʹӨڹΛ༩͑Δڞมྔͨ͘ ͞Μ͋ΔɻͲΕΛબ͍͍ͷʁ • ʮόοΫυΞج४ͳΜͯ͑ͳ͍͚Ͳͳʙʯ ʢ120ทʣ •
ͱݴ͑ɼࢲͨͪ͏ײతʹਤ4.1ͷҙຯΛ ཧղͰ͖Δʢ119ทʣɻ 14
15
ڞมྔͷબͼํ • ݁Ռมʹؔ࿈ʹࢥΘΕΔมɼதؒมͰ͋ Δ͜ͱʹҙ͠ͳ͕ΒɼͳΔ͘ଟ͘ೖ͢Δɻ • ਤ4.1ͷʢ̲ʣೖΕΔͱΑ͍ɼͱݴ͍ͬͯΔɻ • Γ͍ͨͷҼՌޮՌɻภճؼʹ͋·Γڵ ຯͳ͍ʢଟॏڞઢੑؾʹ͠ͳ͍ʣɻ •
͜Ε͕ٶຊͱͷҧ͍ɻ 16
ڧ͘ແࢹͰ͖ΔׂΓͯ݅ • ڞมྔௐʢڞมྔΛ৻ॏʹબͿʣͯ͠ɼ͜ͷ ͕݅ຬͨ͞Ε͍ͯͳ͍ͱμϝɻ • ͯ͢ͷڞมྔΛଌఆ͢Δ͜ͱͰ͖ͳ͍ɻ • ͔͠͠ʮڞมྔௐΛߦͬͨ΄͏͕ɼ୯७ͳ܈ؒ ൺֱΛߦ͏ΑΓ໌Β͔ʹҼՌޮՌʹ͍ۙਪఆΛ ༩͑Δʯ
• νΣοΫํ๏125ʙ126ทɻ 17
ڞมྔௐͷ࣮ࡍ • ͋·ΓͪΌΜͱߦΘΕ͍ͯͳ͍Α͏ͩʢ128 ทʣɻ • Ӝɾ࢞ʢ2015ʣ→ઌߦݚڀ͔ΒͷΈ • Տ߹Βʢ2016ʣ→ઌߦݚڀͱνΣοΫํ๏ʢ2ʣ 18
4.7ஶॻ͔Βͷϝοηʔδ • ώϧͷΨΠυϥΠϯҩֶܥͷจͰΑ͘ݟΔؾ ͕͢Δɻ • ࣜͳ͍ͷͰ҆৺ɻಡΜͰ͓͘ͱ౷ܭతҼՌਪ ͷཧղ͕ਂ·Δɻ 19
RʹΑΔ࣮श 20
ԿΛٻΊΔͷ͔ʁ • ࠓճATEΛٻΊΔɻ 21
ࢀߟจݙ • Pearl, J., Glymour, M. and Jewell, N. P.
(2016). Causal Inference in Statistics: A Primer. John Wiley & Sons. • ੴળथ, ࠓҪതٱ, தඌ༟೭, ᜊ౻૱, ా٢࣏. (2013). ಛఆอ݈ࢦಋͷ༧հೖࢪ ࡦͷޮՌʹؔ͢Δݚڀ: େنσʔλϕʔεΛ ༻ͨ͠είΞʹΑΔҼՌੳ. ްੜͷࢦ 22
• Ӝ, ࢞ګࢠ. (2015). େֶͷਐ ֶɾଔۀ͕ශࠔϦεΫʹ༩͑ΔޮՌ: εί ΞɾϚονϯά๏ʹΑΔߟ (ಛू ශࠔͷ৽
ͨͳࢹ). ౷ܭ, 66(5), 27-32. • ྛַɾࠇֶ(2016). ૬ؔͱҼՌͱؙͱҹ ͷͳ͠ɼؠσʔλαΠΤϯεɼvol.3ɼ 28ʙ48. 23
• ਸ(2010). ௐࠪ؍σʔλͷ౷ܭՊֶɹ ҼՌਪɾબόΠΞεɾσʔλ༥߹. ؠॻ ళ. • ਸ(2016). ౷ܭతҼՌޮՌͷجૅɼؠ σʔλαΠΤϯεɼvol.3ɼ62ʙ90.
• ٶխາ(2004). ౷ܭతҼՌਪʔճؼੳͷ ৽͍͠Έʔ. ேॻళ. 24