$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的因果推論勉強会第5回
Search
Hikaru Goto
October 29, 2016
Research
0
2.5k
統計的因果推論勉強会第5回
経営学系統計エンドユーザーのための統計的因果推論勉強会の第5回目です。これは公開用です。
Hikaru Goto
October 29, 2016
Tweet
Share
More Decks by Hikaru Goto
See All by Hikaru Goto
R実習 2016年9月25日
hikaru1122
1
2.6k
統計的因果推論勉強会 第4回
hikaru1122
0
1.4k
統計的因果推論勉強会 第3回
hikaru1122
0
2.1k
統計的因果推論勉強会 第2回
hikaru1122
0
2.1k
Other Decks in Research
See All in Research
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
320
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
110
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
600
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.3k
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
600
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
420
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
810
投資戦略202508
pw
0
580
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Building Adaptive Systems
keathley
44
2.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Embracing the Ebb and Flow
colly
88
4.9k
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
960
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
Mobile First: as difficult as doing things right
swwweet
225
10k
The Pragmatic Product Professional
lauravandoore
37
7.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
ܦӦֶܥ ౷ܭΤϯυϢʔβʔͷͨΊͷ ౷ܭతҼՌਪ ษڧձ ୈ5ճ 201610݄29 @hikaru1122 1
ษڧձͷϞοτʔ • ݚڀྗΛΞοϓ͠Α͏ɻ • ҼՌਪͷߟ͑ํɾ͍ํΛʹ͚ͭΑ͏ɻ • ֶతͳ͜ͱʹߦ͔ͳ͍ɻ 2
ຊͷൣғ • ٶຊɹୈ5ষ 81ʙ88ทʮόοΫυΞج४ʯ • ຊɹୈ4ষʮڞมྔબͱແࢹͰ͖ͳ͍ܽଌ 3
ຊͷత • ౷ܭతҼՌਪ͕ٻΊΒΕΔ݅ΛΔɻ • ҼՌޮՌΛٻΊΔͨΊͷڞมྔͷબͼํΛΔɻ • R ʹগ͠׳ΕΔɻ 4
ࠓͷ͓ଋ • ͕ݪҼมʢׂɾׂॲཧʣ • ͕݁Ռม • ͕ڞมྔʢަབྷҼࢠʣ 5
ͳͥڞมྔʹ͢Δͷ͔ʁ • ͔Β ͷҼՌޮՌΛΓ͍ͨͷʹɼଞͷཁૉ ͕มͳӨڹΛٴ΅͍ͯ͠Δ͔͠Εͳ͍ɻ • ͦΕΛίϯτϩʔϧͯ͠ɼ ͷ͚ؔͩΛ Γ͍ͨʂ 6
7
ࠓͷٶຊʮόοΫυΞج४ʯ • ճؼੳͷͱ͖ɼೖ͖͢આ໌มΛஅͰ͖ ΔΑ͏ʹͳΔɻ • όοΫυΞج४Λຬͨͨ͠มΛ͑ɼٖ૬ؔ ΛίϯτϩʔϧͰ͖Δɻຬ͍ͨͯ͠ͳ͍มΛ ͑ɼຊདྷͷҼՌޮՌ͕Θ͔Βͳ͘ͳΔɻ 8
όοΫυΞج४1 ࠓͷٶຊ͜Ε͚ͩͰेͰ͢ɻ • ΑΓ্ྲྀʹ͋Δɻதؒʹ͋Δͷμϝɻ • ͱ ͷ߹ྲྀͰͳ͍ɻ •
Λܦ༝͠ͳ͍ҹͰ ʹӨڹ͍ͯ͠Δɻ 1 ٶຊ 82,85ทͱྛɾࠇʢ2016ʣΛࢀߟʹ࡞ɻΑΓݫີͳఆٛٶຊΛࢀরͷ͜ͱɻ 9
ճؼੳΛ͢Δͱ͖ʹେͳ͜ͱ • ҼՌߏΛਤʹͯ͠ඳ͍ͯΈΔɻ • ੳʹ͍͍ͨݪҼมҎ֎ͷม͕όοΫυΞ ج४Λຬ͔ͨ͢ݕ౼͢Δɻ • ੳΛ࣮ߦʂ 10
όοΫυΞج४Λຬͨ͢ ͲΕʁ2 2 ྛɾࠇʢ2016ʣ͔ΒҾ༻ɻ͑ͱৄ͍͠ղઆͦͪΒΛࢀরɻ 11
12
13
ࠓͷຊʮڞมྔͷબʯ • ڞมྔʹείΞΛٻΊΔͱ͖ʹ͏આ໌ม • ݪҼมͱ݁ՌมʹӨڹΛ༩͑Δڞมྔͨ͘ ͞Μ͋ΔɻͲΕΛબ͍͍ͷʁ • ʮόοΫυΞج४ͳΜͯ͑ͳ͍͚Ͳͳʙʯ ʢ120ทʣ •
ͱݴ͑ɼࢲͨͪ͏ײతʹਤ4.1ͷҙຯΛ ཧղͰ͖Δʢ119ทʣɻ 14
15
ڞมྔͷબͼํ • ݁Ռมʹؔ࿈ʹࢥΘΕΔมɼதؒมͰ͋ Δ͜ͱʹҙ͠ͳ͕ΒɼͳΔ͘ଟ͘ೖ͢Δɻ • ਤ4.1ͷʢ̲ʣೖΕΔͱΑ͍ɼͱݴ͍ͬͯΔɻ • Γ͍ͨͷҼՌޮՌɻภճؼʹ͋·Γڵ ຯͳ͍ʢଟॏڞઢੑؾʹ͠ͳ͍ʣɻ •
͜Ε͕ٶຊͱͷҧ͍ɻ 16
ڧ͘ແࢹͰ͖ΔׂΓͯ݅ • ڞมྔௐʢڞมྔΛ৻ॏʹબͿʣͯ͠ɼ͜ͷ ͕݅ຬͨ͞Ε͍ͯͳ͍ͱμϝɻ • ͯ͢ͷڞมྔΛଌఆ͢Δ͜ͱͰ͖ͳ͍ɻ • ͔͠͠ʮڞมྔௐΛߦͬͨ΄͏͕ɼ୯७ͳ܈ؒ ൺֱΛߦ͏ΑΓ໌Β͔ʹҼՌޮՌʹ͍ۙਪఆΛ ༩͑Δʯ
• νΣοΫํ๏125ʙ126ทɻ 17
ڞมྔௐͷ࣮ࡍ • ͋·ΓͪΌΜͱߦΘΕ͍ͯͳ͍Α͏ͩʢ128 ทʣɻ • Ӝɾ࢞ʢ2015ʣ→ઌߦݚڀ͔ΒͷΈ • Տ߹Βʢ2016ʣ→ઌߦݚڀͱνΣοΫํ๏ʢ2ʣ 18
4.7ஶॻ͔Βͷϝοηʔδ • ώϧͷΨΠυϥΠϯҩֶܥͷจͰΑ͘ݟΔؾ ͕͢Δɻ • ࣜͳ͍ͷͰ҆৺ɻಡΜͰ͓͘ͱ౷ܭతҼՌਪ ͷཧղ͕ਂ·Δɻ 19
RʹΑΔ࣮श 20
ԿΛٻΊΔͷ͔ʁ • ࠓճATEΛٻΊΔɻ 21
ࢀߟจݙ • Pearl, J., Glymour, M. and Jewell, N. P.
(2016). Causal Inference in Statistics: A Primer. John Wiley & Sons. • ੴળथ, ࠓҪതٱ, தඌ༟೭, ᜊ౻૱, ా٢࣏. (2013). ಛఆอ݈ࢦಋͷ༧հೖࢪ ࡦͷޮՌʹؔ͢Δݚڀ: େنσʔλϕʔεΛ ༻ͨ͠είΞʹΑΔҼՌੳ. ްੜͷࢦ 22
• Ӝ, ࢞ګࢠ. (2015). େֶͷਐ ֶɾଔۀ͕ශࠔϦεΫʹ༩͑ΔޮՌ: εί ΞɾϚονϯά๏ʹΑΔߟ (ಛू ශࠔͷ৽
ͨͳࢹ). ౷ܭ, 66(5), 27-32. • ྛַɾࠇֶ(2016). ૬ؔͱҼՌͱؙͱҹ ͷͳ͠ɼؠσʔλαΠΤϯεɼvol.3ɼ 28ʙ48. 23
• ਸ(2010). ௐࠪ؍σʔλͷ౷ܭՊֶɹ ҼՌਪɾબόΠΞεɾσʔλ༥߹. ؠॻ ళ. • ਸ(2016). ౷ܭతҼՌޮՌͷجૅɼؠ σʔλαΠΤϯεɼvol.3ɼ62ʙ90.
• ٶխາ(2004). ౷ܭతҼՌਪʔճؼੳͷ ৽͍͠Έʔ. ேॻళ. 24