Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的因果推論勉強会第5回
Search
Hikaru Goto
October 29, 2016
Research
0
2.4k
統計的因果推論勉強会第5回
経営学系統計エンドユーザーのための統計的因果推論勉強会の第5回目です。これは公開用です。
Hikaru Goto
October 29, 2016
Tweet
Share
More Decks by Hikaru Goto
See All by Hikaru Goto
R実習 2016年9月25日
hikaru1122
1
2.6k
統計的因果推論勉強会 第4回
hikaru1122
0
1.4k
統計的因果推論勉強会 第3回
hikaru1122
0
2.1k
統計的因果推論勉強会 第2回
hikaru1122
0
2.1k
Other Decks in Research
See All in Research
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
1.4k
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
230
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
430
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
250
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
9
4.1k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
230
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
880
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
750
20250725-bet-ai-day
cipepser
2
390
数理最適化と機械学習の融合
mickey_kubo
16
9.2k
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
400
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
250
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
How GitHub (no longer) Works
holman
315
140k
GitHub's CSS Performance
jonrohan
1031
460k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Raft: Consensus for Rubyists
vanstee
140
7.1k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Code Reviewing Like a Champion
maltzj
525
40k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Transcript
ܦӦֶܥ ౷ܭΤϯυϢʔβʔͷͨΊͷ ౷ܭతҼՌਪ ษڧձ ୈ5ճ 201610݄29 @hikaru1122 1
ษڧձͷϞοτʔ • ݚڀྗΛΞοϓ͠Α͏ɻ • ҼՌਪͷߟ͑ํɾ͍ํΛʹ͚ͭΑ͏ɻ • ֶతͳ͜ͱʹߦ͔ͳ͍ɻ 2
ຊͷൣғ • ٶຊɹୈ5ষ 81ʙ88ทʮόοΫυΞج४ʯ • ຊɹୈ4ষʮڞมྔબͱແࢹͰ͖ͳ͍ܽଌ 3
ຊͷత • ౷ܭతҼՌਪ͕ٻΊΒΕΔ݅ΛΔɻ • ҼՌޮՌΛٻΊΔͨΊͷڞมྔͷબͼํΛΔɻ • R ʹগ͠׳ΕΔɻ 4
ࠓͷ͓ଋ • ͕ݪҼมʢׂɾׂॲཧʣ • ͕݁Ռม • ͕ڞมྔʢަབྷҼࢠʣ 5
ͳͥڞมྔʹ͢Δͷ͔ʁ • ͔Β ͷҼՌޮՌΛΓ͍ͨͷʹɼଞͷཁૉ ͕มͳӨڹΛٴ΅͍ͯ͠Δ͔͠Εͳ͍ɻ • ͦΕΛίϯτϩʔϧͯ͠ɼ ͷ͚ؔͩΛ Γ͍ͨʂ 6
7
ࠓͷٶຊʮόοΫυΞج४ʯ • ճؼੳͷͱ͖ɼೖ͖͢આ໌มΛஅͰ͖ ΔΑ͏ʹͳΔɻ • όοΫυΞج४Λຬͨͨ͠มΛ͑ɼٖ૬ؔ ΛίϯτϩʔϧͰ͖Δɻຬ͍ͨͯ͠ͳ͍มΛ ͑ɼຊདྷͷҼՌޮՌ͕Θ͔Βͳ͘ͳΔɻ 8
όοΫυΞج४1 ࠓͷٶຊ͜Ε͚ͩͰेͰ͢ɻ • ΑΓ্ྲྀʹ͋Δɻதؒʹ͋Δͷμϝɻ • ͱ ͷ߹ྲྀͰͳ͍ɻ •
Λܦ༝͠ͳ͍ҹͰ ʹӨڹ͍ͯ͠Δɻ 1 ٶຊ 82,85ทͱྛɾࠇʢ2016ʣΛࢀߟʹ࡞ɻΑΓݫີͳఆٛٶຊΛࢀরͷ͜ͱɻ 9
ճؼੳΛ͢Δͱ͖ʹେͳ͜ͱ • ҼՌߏΛਤʹͯ͠ඳ͍ͯΈΔɻ • ੳʹ͍͍ͨݪҼมҎ֎ͷม͕όοΫυΞ ج४Λຬ͔ͨ͢ݕ౼͢Δɻ • ੳΛ࣮ߦʂ 10
όοΫυΞج४Λຬͨ͢ ͲΕʁ2 2 ྛɾࠇʢ2016ʣ͔ΒҾ༻ɻ͑ͱৄ͍͠ղઆͦͪΒΛࢀরɻ 11
12
13
ࠓͷຊʮڞมྔͷબʯ • ڞมྔʹείΞΛٻΊΔͱ͖ʹ͏આ໌ม • ݪҼมͱ݁ՌมʹӨڹΛ༩͑Δڞมྔͨ͘ ͞Μ͋ΔɻͲΕΛબ͍͍ͷʁ • ʮόοΫυΞج४ͳΜͯ͑ͳ͍͚Ͳͳʙʯ ʢ120ทʣ •
ͱݴ͑ɼࢲͨͪ͏ײతʹਤ4.1ͷҙຯΛ ཧղͰ͖Δʢ119ทʣɻ 14
15
ڞมྔͷબͼํ • ݁Ռมʹؔ࿈ʹࢥΘΕΔมɼதؒมͰ͋ Δ͜ͱʹҙ͠ͳ͕ΒɼͳΔ͘ଟ͘ೖ͢Δɻ • ਤ4.1ͷʢ̲ʣೖΕΔͱΑ͍ɼͱݴ͍ͬͯΔɻ • Γ͍ͨͷҼՌޮՌɻภճؼʹ͋·Γڵ ຯͳ͍ʢଟॏڞઢੑؾʹ͠ͳ͍ʣɻ •
͜Ε͕ٶຊͱͷҧ͍ɻ 16
ڧ͘ແࢹͰ͖ΔׂΓͯ݅ • ڞมྔௐʢڞมྔΛ৻ॏʹબͿʣͯ͠ɼ͜ͷ ͕݅ຬͨ͞Ε͍ͯͳ͍ͱμϝɻ • ͯ͢ͷڞมྔΛଌఆ͢Δ͜ͱͰ͖ͳ͍ɻ • ͔͠͠ʮڞมྔௐΛߦͬͨ΄͏͕ɼ୯७ͳ܈ؒ ൺֱΛߦ͏ΑΓ໌Β͔ʹҼՌޮՌʹ͍ۙਪఆΛ ༩͑Δʯ
• νΣοΫํ๏125ʙ126ทɻ 17
ڞมྔௐͷ࣮ࡍ • ͋·ΓͪΌΜͱߦΘΕ͍ͯͳ͍Α͏ͩʢ128 ทʣɻ • Ӝɾ࢞ʢ2015ʣ→ઌߦݚڀ͔ΒͷΈ • Տ߹Βʢ2016ʣ→ઌߦݚڀͱνΣοΫํ๏ʢ2ʣ 18
4.7ஶॻ͔Βͷϝοηʔδ • ώϧͷΨΠυϥΠϯҩֶܥͷจͰΑ͘ݟΔؾ ͕͢Δɻ • ࣜͳ͍ͷͰ҆৺ɻಡΜͰ͓͘ͱ౷ܭతҼՌਪ ͷཧղ͕ਂ·Δɻ 19
RʹΑΔ࣮श 20
ԿΛٻΊΔͷ͔ʁ • ࠓճATEΛٻΊΔɻ 21
ࢀߟจݙ • Pearl, J., Glymour, M. and Jewell, N. P.
(2016). Causal Inference in Statistics: A Primer. John Wiley & Sons. • ੴળथ, ࠓҪതٱ, தඌ༟೭, ᜊ౻૱, ా٢࣏. (2013). ಛఆอ݈ࢦಋͷ༧հೖࢪ ࡦͷޮՌʹؔ͢Δݚڀ: େنσʔλϕʔεΛ ༻ͨ͠είΞʹΑΔҼՌੳ. ްੜͷࢦ 22
• Ӝ, ࢞ګࢠ. (2015). େֶͷਐ ֶɾଔۀ͕ශࠔϦεΫʹ༩͑ΔޮՌ: εί ΞɾϚονϯά๏ʹΑΔߟ (ಛू ශࠔͷ৽
ͨͳࢹ). ౷ܭ, 66(5), 27-32. • ྛַɾࠇֶ(2016). ૬ؔͱҼՌͱؙͱҹ ͷͳ͠ɼؠσʔλαΠΤϯεɼvol.3ɼ 28ʙ48. 23
• ਸ(2010). ௐࠪ؍σʔλͷ౷ܭՊֶɹ ҼՌਪɾબόΠΞεɾσʔλ༥߹. ؠॻ ళ. • ਸ(2016). ౷ܭతҼՌޮՌͷجૅɼؠ σʔλαΠΤϯεɼvol.3ɼ62ʙ90.
• ٶխາ(2004). ౷ܭతҼՌਪʔճؼੳͷ ৽͍͠Έʔ. ேॻళ. 24