Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報系システムで生き残る
Search
A.K.A Tony Morris
April 08, 2016
Programming
0
160
情報系システムで生き残る
雑兵MeetUp #4 エイプリルフーLT 向けの資料です。
A.K.A Tony Morris
April 08, 2016
Tweet
Share
More Decks by A.K.A Tony Morris
See All by A.K.A Tony Morris
The Best Moment Of SKE48 2017
hiratatom
0
110
SKE48とセットリスト
hiratatom
0
130
ふくらはぎ。
hiratatom
0
140
COBOLミートアップ #1
hiratatom
0
120
トニーモリスの総選挙参戦記
hiratatom
0
360
んんんまなつぅ
hiratatom
0
1.5k
ミニマリストのためのAlpine
hiratatom
2
6.7k
Tony Morris Meet Up
hiratatom
0
310
Other Decks in Programming
See All in Programming
知られているようで知られていない JavaScriptの仕様 4選
syumai
0
600
Dive into Triton Internals
appleparan
0
490
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
4
650
Kotlin + Power-Assert 言語組み込みならではのAssertion Library採用と運用ベストプラクティス by Kazuki Matsuda/Gen-AX
kazukima
0
110
問題の見方を変える「システム思考」超入門
panda_program
0
230
JJUG CCC 2025 Fall: Virtual Thread Deep Dive
ternbusty
3
420
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
280
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
200
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
350
DartASTとその活用
sotaatos
2
130
詳細の決定を遅らせつつ実装を早くする
shimabox
1
1.2k
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
990
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
930
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
970
Raft: Consensus for Rubyists
vanstee
140
7.2k
Designing for humans not robots
tammielis
254
26k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
A Tale of Four Properties
chriscoyier
162
23k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Building Adaptive Systems
keathley
44
2.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
情報系システムで生き残る
自己紹介 • トニーモリスはビジネスネーム • SIer勤務 • DWH、Business Intelligenceの仕事がメイン • 流行の言葉で言うと、Big
DataとかAnalitics • 職種はプロジェクトマネージャーまたはアーキテクト(プロジェクトによる)
情報系システムとは • 企業に蓄積されているデータを用いて企業経営に役立つ情報を提供する システム • 対義語は基幹系システム • ワードとしては、Data Warehouse、Business Intelligence
Analytics、Big Data、Cognitive Computing など • 最近はSystem Of Engagementと呼んだりする • 対義語はSystem Of Record • 今日は伝統的な情報系システムについてお話します • 機械学習、自然言語処理、統計学等の最新技術についてはお話しません • 情報系システムにアサインされてしまったら、要件定義・設計はどうすれば よいか、についてお話します
DWHで使用するデータモデルはスタースキーマが基本 4 スタースキーマであれば、様々な分析に対応しやすい 分析に関し、ある意味を持つデータの塊を「サブジェクト」と呼ぶ。1スタースキーマ=1サブジェクトで構成する バッチのカスタムアプリまたはETLツールを用い、ソースデータを下記のようなテーブルに格納しておくことが必要 POS 店舗CD
レジ番号 販売日付時刻 取引番号 商品(JAN) 顧客CD 数量 金額 店舗 店舗CD 市町村 都道府県 タイプ レジ レジ番号 フロア 販売日付時刻 販売日付時刻 時間帯 日 月 年 曜日 商品 商品(JAN) 部門 セグメント 顧客 顧客CD 性別 年代 ランク 市町村別・部門別・曜日別売上推移 顧客ランク・商品別・月別売上数量ランキング (例) ファクトと呼ぶ ディメンジョン と呼ぶ
スタースキーマをどうやって設計するか 5 小売業における売上分析を例にとって説明する POS 店舗CD レジ番号 販売日付時刻 取引番号 JAN
顧客CD 数量 金額 ①サブジェクト(この場合は「売上」) に対応するデータを特定する ②その内容をファクトテ ーブルとして定義する ③分析軸と集計 項目を特定する ③分析軸にディメ ンジョンを追加する ※顧客IDは重要な分 析軸のため 各社ポ イントカードに力を入れ る 集計項 目 分析軸 カウントして顧客数 【店舗】 ①店舗CD<市町村<都道府県 ②店舗CD<タイプ(大型、小型等) 【レジ番号】 ①レジ番号<フロア 【販売日付時刻】 ①販売日付時刻<年月日<月<年 ②販売日付時刻<時間帯 ②販売日付時刻<曜日 【商品】 ①JAN<部門 ②JAN<商品セグメント 【顧客】 ①顧客CD<性別 ②顧客CD<年代 ②顧客CD<ランク(過去の売上)
• OLTPシステムより難易度は低いです • 安心して取り組んでください