Upgrade to Pro — share decks privately, control downloads, hide ads and more …

情報系システムで生き残る

 情報系システムで生き残る

雑兵MeetUp #4 エイプリルフーLT 向けの資料です。

9da3e55b63eadb238fb34882ca08e27b?s=128

A.K.A Tony Morris

April 08, 2016
Tweet

More Decks by A.K.A Tony Morris

Other Decks in Programming

Transcript

  1. 情報系システムで生き残る

  2. 自己紹介 • トニーモリスはビジネスネーム • SIer勤務 • DWH、Business Intelligenceの仕事がメイン • 流行の言葉で言うと、Big

    DataとかAnalitics • 職種はプロジェクトマネージャーまたはアーキテクト(プロジェクトによる)
  3. 情報系システムとは • 企業に蓄積されているデータを用いて企業経営に役立つ情報を提供する システム • 対義語は基幹系システム • ワードとしては、Data Warehouse、Business Intelligence

    Analytics、Big Data、Cognitive Computing など • 最近はSystem Of Engagementと呼んだりする • 対義語はSystem Of Record • 今日は伝統的な情報系システムについてお話します • 機械学習、自然言語処理、統計学等の最新技術についてはお話しません • 情報系システムにアサインされてしまったら、要件定義・設計はどうすれば よいか、についてお話します
  4. DWHで使用するデータモデルはスタースキーマが基本 4  スタースキーマであれば、様々な分析に対応しやすい  分析に関し、ある意味を持つデータの塊を「サブジェクト」と呼ぶ。1スタースキーマ=1サブジェクトで構成する  バッチのカスタムアプリまたはETLツールを用い、ソースデータを下記のようなテーブルに格納しておくことが必要 POS 店舗CD

    レジ番号 販売日付時刻 取引番号 商品(JAN) 顧客CD 数量 金額 店舗 店舗CD 市町村 都道府県 タイプ レジ レジ番号 フロア 販売日付時刻 販売日付時刻 時間帯 日 月 年 曜日 商品 商品(JAN) 部門 セグメント 顧客 顧客CD 性別 年代 ランク 市町村別・部門別・曜日別売上推移 顧客ランク・商品別・月別売上数量ランキング (例) ファクトと呼ぶ ディメンジョン と呼ぶ
  5. スタースキーマをどうやって設計するか 5  小売業における売上分析を例にとって説明する POS 店舗CD レジ番号 販売日付時刻 取引番号 JAN

    顧客CD 数量 金額 ①サブジェクト(この場合は「売上」) に対応するデータを特定する ②その内容をファクトテ ーブルとして定義する ③分析軸と集計 項目を特定する ③分析軸にディメ ンジョンを追加する ※顧客IDは重要な分 析軸のため 各社ポ イントカードに力を入れ る 集計項 目 分析軸 カウントして顧客数 【店舗】 ①店舗CD<市町村<都道府県 ②店舗CD<タイプ(大型、小型等) 【レジ番号】 ①レジ番号<フロア 【販売日付時刻】 ①販売日付時刻<年月日<月<年 ②販売日付時刻<時間帯 ②販売日付時刻<曜日 【商品】 ①JAN<部門 ②JAN<商品セグメント 【顧客】 ①顧客CD<性別 ②顧客CD<年代 ②顧客CD<ランク(過去の売上)
  6. • OLTPシステムより難易度は低いです • 安心して取り組んでください