Upgrade to Pro — share decks privately, control downloads, hide ads and more …

TesnsorFlowJs.pdf

Hiren Dave
October 12, 2019

 TesnsorFlowJs.pdf

Hiren Dave

October 12, 2019
Tweet

More Decks by Hiren Dave

Other Decks in Technology

Transcript

  1. Proprietary + Confidential No Drivers / No Installs Just Downloads

    Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem $ python –v $ pip install pandas $ pip install django $ pip install numpy $ pip3 install flask $ pip install tensorflow $ pip install sklearn $ python –v $ pip install pandas $ pip install django $ pip install numpy $ pip3 install flask $ pip install tensorflow $ pip install sklearn <script src="https://cdn.jsdelivr.net/npm/@tensorflo w/[email protected]/dist/tf.min.js"></script>
  2. Proprietary + Confidential Highly Interactive Source: Lorem ipsum dolor sit

    amet, consectetur adipiscing elit. Duis non erat sem $ step 1 – loss – 5.0681 (10 sec/step) $ step 2 – loss – 5.0681 (10 sec/step) $ step 3 – loss – 5.0681 (10 sec/step) $ step 4 – loss – 5.0681 (10 sec/step) $ step 5 – loss – 5.0681 (10 sec/step) $ step 6 – loss – 5.0681 (10 sec/step) $ step 7 – loss – 5.0681 (10 sec/step) $ step 8 – loss – 5.0681 (10 sec/step)
  3. Proprietary + Confidential Access to Sensors Source: Lorem ipsum dolor

    sit amet, consectetur adipiscing elit. Duis non erat sem GPS Microphone Camera Gyroscope
  4. Proprietary + Confidential Can Work Offline / Data Privacy Source:

    Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem
  5. Proprietary + Confidential Web Is Every Where Source: Lorem ipsum

    dolor sit amet, consectetur adipiscing elit. Duis non erat sem
  6. deeplearn.js • Release in August 2017 • GPU Accerelerated via

    WebGL • Allows Inference and Training in Browser
  7. With TensorFlow.js you can • Create models directly in browser

    • Import pretrained models for inference • Retrain imported models
  8. What is a Tensor • It is n – dimensional

    Array • Each element in Tensor has same data type • Retrain imported models
  9. What is an Epoch? • When you have huge data

    • Divide it in batches for training • Feed batches one by one for training • When all batches are done, that’s the EPOCH
  10. What are the loss functions? • You have huge data

    for training • Feed data one by one for training • How to ensure model’s output is correct • A loss function maps decisions to their associated costs.
  11. Q&A