Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pepabo Tech Conference 7
Search
hisaichi5518
February 02, 2017
Technology
1
1.1k
Pepabo Tech Conference 7
hisaichi5518
February 02, 2017
Tweet
Share
More Decks by hisaichi5518
See All by hisaichi5518
技術力あげたい
hisaichi5518
4
4.5k
Dartにおける静的解析 / FlutterKaigi 2022
hisaichi5518
0
2.2k
ソフトウェアエンジニアが品質保証を学んでわかったこと / What software engineers have learned about quality assurance
hisaichi5518
6
10k
10X と Flutter / 10X with Flutter
hisaichi5518
0
2.2k
ひさいちとの1on1
hisaichi5518
0
2.6k
しあわせ推進委員会 / Shiawase Promotion Committee
hisaichi5518
0
1.2k
2017-03-23
hisaichi5518
0
3.7k
かんばんやりたい
hisaichi5518
0
1.1k
エンジニアの立ち居振る舞い
hisaichi5518
2
1.6k
Other Decks in Technology
See All in Technology
テストを軸にした生き残り術
kworkdev
PRO
0
220
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
3
590
AIがコード書きすぎ問題にはAIで立ち向かえ
jyoshise
1
250
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.2k
S3アクセス制御の設計ポイント
tommy0124
3
210
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
3
1.1k
いま注目のAIエージェントを作ってみよう
supermarimobros
0
360
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
360
Android Audio: Beyond Winning On It
atsushieno
0
3.4k
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
5
1.8k
20250913_JAWS_sysad_kobe
takuyay0ne
2
250
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Visualization
eitanlees
148
16k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Docker and Python
trallard
46
3.6k
Music & Morning Musume
bryan
46
6.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Building an army of robots
kneath
306
46k
Transcript
!IJTBJDIJ(.01FQBCP *OD ୈճϖύϘςοΫΧϯϑΝϨϯε NJOOF"OESPJEΞϓϦ ʹ͓͚ΔνʔϜ։ൃ
νʔϑςΫχΧϧϦʔυ !IJTBJDIJ "OESPJEΞϓϦΤϯδχΞ
$5-ͬͯ w ෦ํɾඪʹج͖ͮɺ෦શମͷٕज़બ͓Αͼٕज़ ऀ৫ʹ͍ͭͯํΛܾఆ͠ɺ࣮ߦ͢Δɻ
$5-ͬͯ ʢ؆୯ʹʣ w $50͕શࣾͷٕज़ํͱٕज़ऀ৫ΛϚωδϝϯτ͢Δͷ ʹରͯ͠ɺ$5-෦ॺͷٕज़ํͱٕज़ऀ৫ΛϚωδ ϝϯτ͢Δ w ঢ়گʹԠͯ͡ɺςοΫϦʔυͷׂ୲͍ͬͯ͘ IUUQEJBSZTIVDSFBNOFUFDDUMIUNM
$5-ͬͯ ʢ؆୯ʹʣ w $50͕શࣾͷٕज़ํͱٕज़ऀ৫ΛϚωδϝϯτ͢Δͷ ʹରͯ͠ɺ$5-෦ॺͷٕज़ํͱٕज़ऀ৫ΛϚωδ ϝϯτ͢Δ w ঢ়گʹԠͯ͡ɺςοΫϦʔυͷׂ୲͍ͬͯ͘ IUUQEJBSZTIVDSFBNOFUFDDUMIUNM
ςοΫϦʔυͬͯ IUUQEIBUFOBOFKQIJHFQPO ΤϯδχΞνʔϜͷੜ࢈ੑΛ ՄೳͳݶΓ࠷େԽ
νʔϜͷੜ࢈ੑͷ࠷େԽ ͻͱΓͰΖ͏ͱͯ͠ແཧ
"OESPJEΤϯδχΞͨͪ Ͱ͖ͬͯͨ͜ͱ
ςετͷ w ςετΛॻ͖׳Ε͍ͯΔਓ͕গͳ͔ͬͨ w ׳ΕΔͨΊʹिؒʹςετΛॻ͘ΛఆΊͨ ಋೖཧ༝ w ݱࡏͷϝϯόʔɺςετʹॻ͖׳Ε͍ͯΔͷͰഇࢭࡁΈ w ৽ͨͳϝϯόʔ͕དྷͨΒɺ·ͨͬͯΈΔͷ͍͍͔
w ·ͨςετΛ૿͢ͱ͍͏ҙຯͰޮՌ͋ͬͨ ݱࡏ
%FWJDF'BSNಋೖ w ࣮ࡍͷσόΠεΛར༻ͯ͠ςετΛ࣮ߦͯ͘͠ΕΔɻ"NB[POࣾఏ ڙ %FWJDF'BSNͱ w ϓογϡͨ͠ΒϒϥϯνຖʹࣗಈͰ࣮ߦ͢ΔΑ͏ʹ͍ͨ͠ ಋೖཧ༝ w ಈ͘ϒϥϯν੍ݶ͔͚͍ͯΔ͚Ͳܧଓத
w 'JSFCBTF5FTU-BCͷಋೖݕ౼த ݱࡏ
.71ΞʔΩςΫνϟಋೖ w 6*ςετͭΒ͍ɻ୯ମςετॻ͖͍ͨ w "OESPJE5FTUͰͳ͍ͱಈ͔ͳ͍Ϋϥε͔ΒϩδοΫΛ͍ͨ͠ w ܾ·Γ͝ͱΛܾΊͯͭͷΫϥεʹ٧ΊࠐΈ͗͢ͳ͍Α͏ʹ͍ͨ͠ ಋೖཧ༝ w ৽͍͠ը໘.71ΞʔΩςΫνϟʹԊͬͯ࡞Δ
w ݹ͍ը໘࡞Γ͢அΛੵۃతʹ͢Δɻ࠷ۙͩͱΧʔτը໘ɾ จೖྗը໘ͳͲΛશ෦ॻ͖͑ͨ w ʮEFYGN.71ʯͰݕࡧ ݱࡏ
ϦϦʔε୲ʢϦϦ୲ʣ w ϦϦʔεʹؚΊΔͷͷਐḿ֬ೝɾϦϦʔεલʹόά͕ݟ͔ͭͬͨ ΒͲ͏͢Δ͔ͷஅɾϦϦʔε࡞ۀɾϦϦʔεޙͷΫϥογϡࢹ ϦϦʔε୲ͱ w ϦϦʔεʹඞཁͳ͜ͱΛ୭͕ΔͱܾΊΔ͜ͱͰʮ୭͔͕ΔͩΖ ͏ʯΛͳ͘͢ ಋೖཧ༝ w
όʔδϣϯ͝ͱʹ࣋ͪճΓͰ୲͢Δ w ϦϦʔε୲͕ɺϦϦʔεલʹΠγϡʔΛཱͯͯɺϦϦʔε50%0 ͷՄࢹԽͳͲ͍ͯ͠Δ ݱࡏ
ΠγϡʔɾϓϧϦΫςϯϓϨʔτ w ΠγϡʔϓϧϦΫͰॻ͘༰͕ϝϯόʔͰόϥόϥ w ͋ͱ͔Βݟͨ࣌ʹԿΛ͔͑ͨͬͨͷ͔Α͘Θ͔Βͳ͘ͳͬͯࠔ Δ w ॻ͘͜ͱΛܾΊ͓ͯ͘͜ͱͰɺࣄΛཧ͘͢͢͠Δ ಋೖཧ༝ w
Πγϡʔʮࠔ͍ͬͯΔ͜ͱʯʮΰʔϧʯʮ૬ஊ͍ͨ͜͠ͱʯʮؔ ࿈ʯ w ϓϧϦΫʮͳͥΔͷ͔ɾͲ͏Δͷ͔ʯʮ50%0ʯʮϨϏϡʔ ϙΠϯτʯʮؔ࿈ʯ w ඞཁʹԠͯ͡Ξοϓσʔτ͍ͯͯ͠ɺΑΓྑ͍͍ͯͬͯ͘͠Δ ݱࡏ
ίʔυϨϏϡʔ w ଞͷਓ͕ॻ͍ͨίʔυΛಡΜͰɺֶͿ w ଐਓੑͷഉআ w ػցతʹൃݟग़དྷͳ͍ޡΓͷൃݟ ҙਤ w ϝϯόʔ͕ਓͳͷͰɺ͓ޓ͍ͷϓϧϦΫΛϨϏϡʔ͢Δ
w ϓϧϦΫʹΞαΠϯ͞ΕͨΒϨϏϡʔ͢Δ ݱࡏ
ϨϏϡʔλΠϜ w ʹճɺϝϯόʔશһ͕ίʔυϨϏϡʔΛ͢Δ࣌ؒ ϨϏϡʔλΠϜͱ w ਓʹΑͬͯϨϏϡʔ͢ΔλΠϛϯά͕ϚνϚν w ͲͷλΠϛϯάͰϨϏϡʔ͕ऴΘΔͷ͔Θ͔Βͳ͍ ಋೖཧ༝ w
͓ன͝Μޙͷ͔࣌Β࣌·ͰϨϏϡʔλΠϜ w ޙͰग़ͯ͘ΔϦϚΠϯμʔͷ͓͔͛Ͱؾ͚Δ͠ɺϨϏϡʔ͠Α͏ ͱࢥ͑Δ ݱࡏ
վળͷ࣌ؒ w ɺݟ͚ͭͨ՝Λमਖ਼͢Δ࣌ؒ վળͷ࣌ؒͱ w ֤ʑɺ՝ͷൃݟग़དྷΔ͚ͲɺͦΕΛ࣮ߦ͢Δ͕࣌ؒͳ͍ ಋೖཧ༝ w ݁ہ50%0͕ͯ͘͠Δ͕࣌ؒ࣋ͯͣഇࢭ w
50%0ͷݟੵΓΛ࣌ؒʹͯ͠ɺݟ͚ͭͨ՝Λमਖ਼͢Δ༨ ༟Λ࣋ͨͤͯΈ͍ͯΔ ݱࡏ
4MBDLϦϚΠϯμʔ׆༻ w ʮ͔࣌ΒϨϏϡʔλΠϜͶʯͬͯݴ͚ͬͯͨͲɺΕΔ͜ͱ͕ ଟʑ͋ͬͨ w ܾ·ͬͨΒ͙͢ઃఆग़དྷͯϝϯόʔશһ͕ར༻͍ͯ͠Δ4MBDLͷϦ ϚΠϯμʔΛ׆༻͢Δ͜ͱʹͨ͠ ಋೖཧ༝ w ʮஈ֊ϦϦʔεͷׂ߹Λ͋͛Δʯʮ͔ΜΜߋ৽ʯʮ$SBTIMZUJDT
ΛݟΔʯʮ༦ձΛ͢ΔʯʮλεΫݟ͠ʯͷϦϚΠϯμʔ͕ઃఆ͞ Ε͍ͯΔ ݱࡏ
શ෦ "OESPJEΤϯδχΞͨͪ Ͱ͖ͬͯͨ
͕શ෦ߟ͑ͨΘ͚Ͱͳ͍ʂ
l"OESPJEΤϯδχΞz͕ νʔϜͷ՝ʹؾ͚ͮͯ l"OESPJEΤϯδχΞzͰ ղܾํ๏Λߟ͑Δ ڥΛͭ͘Δ
ΈΜͳ͕՝ൃݟɾղܾͰ͖ΔڥΛͭ͘Δ w ;Γ͔͑Γ w ༦ձ w ͔ΜΜ
"OESPJE;Γ͔͑Γ w ϦϦʔεຖʹ"OESPJEνʔϜಛ༗ͷ՝Λൃݟ͠ɺղܾ͢ ΔͨΊʹΈΜͳͰߟ͍͑ͨ
"OESPJE༦ձ w ࠓͬͨ͜ͱɾࠔ͍ͬͯΔ͜ͱΛͦͷͷ͏ͪʹڞ༗͢ Δ͜ͱͰɺ;Γ͔͑ΓͷपظΑΓૣ͘νʔϜͷ՝ൃݟͱ ղܾΛߦ͏ w ͬͨ͜ͱͷڞ༗ΛΞϓϦΛݟͤͳ͕Βߦ͏
͔ΜΜ w 50%0ͷՄࢹԽ͕ߦΘΕ͍ͯͳ͍ͱɺػೳ͕ϦϦʔεʹೖ Δͷ͔ɾೖΒͳ͍ͷ͔୲ऀʹฉ͔ͳ͍ͱΘ͔Βͣɺଞͷ ϝϯόʔ͕ࣗΕͯΔͱ͍ͬͨʹؾ͖ͮʹ͍͘ w ʮ͔ΜΜΓ͍ͨʯͰݕࡧ
͔ΜΜ
l"OESPJEΤϯδχΞz͕ νʔϜͷ՝ʹؾ͚ͮͯ l"OESPJEΤϯδχΞzͰ ղܾํ๏Λߟ͑Δ ڥΛͭ͘Δ
ςετͷɺ%FWJDF'BSN ಋೖɺ.71ΞʔΩςΫνϟಋ ೖɺϦϦʔε୲ɺΠγϡʔ ϓϧϦΫςϯϓϨʔτɺίʔ υϨϏϡʔɺϨϏϡʔλΠϜɺ վળͷ࣌ؒɺ4MBDLϦϚΠϯ μʔ׆༻ʜΛͨ݁͠Ռ
Χʔτը໘σβΠϯϦχϡʔΞϧɾจ ೖྗը໘σβΠϯϦχϡʔΞϧɾจ֬ ೝը໘σβΠϯϦχϡʔΞϧɾ࡞ϋο γϡλάɾEέʔλΠ͍ϓϥεରԠɾBV ͔ΜͨΜܾࡁରԠɾήετߪೖɾ࡞ը ૾ҰׅొɾNJOOFNBHରԠɾΫʔ ϙϯɾࡏݿมߋɾߪೖΦϓγϣϯɾλο νϑΟʔυόοΫରԠɾ͓ؾʹೖΓߜΓ ࠐΈɾؔ࿈࡞දࣔɾΞϨϧΪʔදࣔର ԠͳͲΛϦϦʔεग़དྷͨ
ࠓޙ
lΈΜͳz͕ νʔϜͷ՝ʹؾ͚ͮͯ lΈΜͳzͰ ղܾํ๏Λߟ͑Δ ڥΛͭ͘Δ
NJOOFࣄۀ෦ͷੜ࢈ੑ Λ࠷େԽ