Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mlct.pdf
Search
Hirofumi Nakagawa/中河 宏文
July 23, 2018
Programming
2
2.1k
mlct.pdf
Hirofumi Nakagawa/中河 宏文
July 23, 2018
Tweet
Share
More Decks by Hirofumi Nakagawa/中河 宏文
See All by Hirofumi Nakagawa/中河 宏文
IoTデバイスでMLモデルを動かす技術
hnakagawa
0
200
Kanazawa_AI.pdf
hnakagawa
0
200
メルカリ写真検索における Amazon EKS の活用事例と プロダクトにおけるEdgeAI technologyの展望
hnakagawa
5
9k
メルカリの写真検索を支えるバックエンド CCSE 2019 version
hnakagawa
0
330
メルカリ写真検索における Amazon EKS の活用事例
hnakagawa
6
29k
メルカリの写真検索を支えるバックエンド
hnakagawa
1
1.2k
Mercari ML Platform
hnakagawa
1
17k
機械学習によるマーケット健全化施策を支える技術
hnakagawa
0
250
メルカリのマーケット健全化施策を支えるML基盤
hnakagawa
10
9.1k
Other Decks in Programming
See All in Programming
Microservices rules: What good looks like
cer
PRO
0
1.6k
AIコーディングエージェント(NotebookLM)
kondai24
0
210
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
270
AIエージェントの設計で注意するべきポイント6選
har1101
5
1.4k
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
170
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
Graviton と Nitro と私
maroon1st
0
110
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
390
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
230
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
540
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
First, design no harm
axbom
PRO
1
1k
Designing for Timeless Needs
cassininazir
0
86
Balancing Empowerment & Direction
lara
5
810
The Language of Interfaces
destraynor
162
25k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Everyday Curiosity
cassininazir
0
110
Are puppies a ranking factor?
jonoalderson
0
2.3k
The agentic SEO stack - context over prompts
schlessera
0
550
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
250
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.7k
Transcript
ϝϧΧϦͷMLج൫ MLCT vol.5 hnakagawa
ࣗݾհ • Hirofumi Nakagawa (hnakagawa) • 20177݄ೖࣾ • ॴଐSRE •
σόΠευϥΠό։ൃ͔Βϑϩϯ τΤϯυ։ൃ·ͰΔԿͰ • NOT σʔλαΠΤϯςΟετ • https://github.com/hnakagawa
͓ࣄ • ML Platform։ൃ • σʔλαΠΤϯςΟετͱSREͷεΩϧΪϟο ϓΛຒΊΔ • ML Reliability,
SysML?, MLOps? • SREͷཱ͔ΒMLγεςϜͷࣗಈԽΛߦ͏
ML Platform • ͷML Platform • kubernetesϕʔε • طଘͷML FrameworkΛ༻͠
؆୯ʹTraining/ServingΛߦ͏ ڥΛఏڙ
ͦͷ͏ͪOSSͰެ։༧ఆ(ଟ
ϝϧΧϦͷMLར༻ࣄྫ • ײಈग़ • ҧग़ݕ • Ձ֨αδΣετ • ΤΠταδΣετ ʑ…
̍ઍສpredictionΛߦ͍ͬͯΔ
ML Platform Architecture ,VCFSOFUFT $POUSPMMFS $-* $MVTUFS8PSLGMPX %BTICPBSE 4UPSBHF(BUFXBZ .FUSJDT
3VOOFS $PNQPOFOU .FSDBSJ.- $PNQPOFOU &YUFSOBM .JEEMFXBSF
Model Training & Serving Workflow
.-1MBUGPSN USBJOJOHDMVTUFS Workflow for Production $* .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ +PC
+PC ɾɾ 3&45 "1* 4USFBNJOH 5'4FSW JOH ɾɾɾ
.-1MBUGPSN USBJOJOHDMVTUFS Training Workflow $* .PEFM3FHJTUSZ +PC +PC ɾɾɾ 1.
GitHubͷpushΛτϦΨʹtrainingΛىಈ 2. Training͞ΕͨModelModel Registry ্͕Δ
Serving Workflow .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ ɾɾ 3&45 "1* 4USFBNJOH 5'
4FSWJOH 1. Model RegistryΛࢹͯࣗ͠ಈͰModel ΛServing 2. Serving&Test͕ޭ͢Δͱຊ൪༻k8s manifestΛग़ྗ
Container Workflow %BUB4PVSDF *NBHF 5FYUɹ 1SFQSPDFT TJOH *NBHF &TUJNBUPS *NBHF
17 17 1JDUVSF 1SFQSPDFT TJOH *NBHF 17 It’s own implementation
Model Serving APIͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM 5' .PEFM 'MBTL
4, .PEFM 4, .PEFM 4, .PEFM gRPC .FSDBSJ"1* REST FlaskͰલॲཧΛߦ͍ ཪͷTensorFlow Servingʹ͍͛ͯΔ
Model Serving API Streaming ver ͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM
5' .PEFM .-1MBUGPSN 'SBNFXPSL PS "QBDIF#FBN 4, .PEFM 4, .PEFM 4, .PEFM gRPC PubSub
ModelͱίϯςφɾΠϝʔδ • ڊେͳML ModelΛίϯςφɾΠϝʔδʹؚΊ Δ͔൱͔ • ؚΊͳ͍ͷͰ͋ΕԿॲʹஔ͢Δ͔ • ϙʔλϏϦςΟੑͱϩʔυ࣌ؒͷτϨʔυΦϑ •
ྑ͍ΞΠσΟΞ͕͋Εڭ͑ͯԼ͍͞…
௨ৗͷAPIͱಛੑ͕ҧ͏ • ѻ͏ϦιʔεɺModelαΠζ͕େ͖͘ͳΔ ߹͕ଟ͍(ඦMBʙGB) • CPUɾϝϞϦϦιʔεͷফඅ͕ܹ͍͠ • ߹ʹΑͬͯGPU͏
ϝϞϦফඅ • ҧݕγεςϜͷPython࣮෦࣮ߦ࣌ ʹ2GBϝϞϦΛফඅ͢Δˠࠓޙ͞Βʹ૿͑ Δ༧ఆ͋Δ • Scikit-learnͰهड़͞Εͨલॲཧ෦͕େ͖͘ ͳΓ͕ͪ
Pythonͱฒྻੑ • વThread͕͑ͳ͍(GILͷͨΊ) • ϓϩηεຖʹModelΛϩʔυ͢Δͱඞཁͳϝ ϞϦαΠζ͕େ͖͘ͳΔˠ Blue-Green DeployͷোʹͳΔ
ਖ਼PythonͰͷServing Πϯϑϥతʹਏ͍ࣄ͕ଟ͍…
ϝϞϦΛݡ͘͏ • fork͢ΔલʹmodelΛϩʔυ͠Copy on Write Λޮ͔͢ • k8sͷone process per
containerηΦϦ͋ ͑ͯഁ͍ͬͯΔ
Copy On Writeͷ෮श ϝϞϦ ϓϩηε ࢠϓϩηε 2.fork 1BHF" 1.allocation ಉ͡ྖҬΛࢀর
ϓϩηε͕ϝϞϦͷ༰Λ ॻ͖͑Δͱ… ϝϞϦ ϓϩηε ࢠϓϩηε 1BHF" 1BHF# OS͕ผͷྖҬΛAllocationͯ͠ݩσʔλΛίϐʔ͢Δ ผͷྖҬΛࢀর
Current Issues
ߴͳܧଓతϝϯςφϯε͕ඞཁ • MLػೳσʔλͷ͕มΘͬͨΓɺ༧֎ ͷ͕ൃੜͨ͠Γͯ͠ɺͦΕΒʹରԠ͠ଓ ͚Δඞཁ͕͋Δ MLػೳϦϦʔεޙେ͖ͳ ίετ͕͔͔Γଓ͚Δ
େ෯ͳࣗಈԽ͕ඞਢ
In Progress
ߴͳࣗಈԽ • ࣾͷσʔλ͔ΒFeature Extraction͢Δ࣮ ΛίϯϙʔωϯτԽ • ಛఆͷΛղܾ͢ΔϞσϧߏஙΛ͋Δఔ ࣗಈԽ • ϦϦʔεޙͷRe-TrainingɺHyper
parameter optimizationɺDeployΛࣗಈԽ
AutoFlow 'FBUVSF&YUSBDUJPO $PNQPOFOUT $MBTTJGJDBUJPO $PNQPOFOUT $PODBUFOBUJPO $PNQPOFOUT .PEFM #VJMEFS $PNQPOFOUT
3FHJTUSZ Ϋϥελ্ͰϞσϧͷࣗಈߏஙͱϋΠύʔύϥ ϝʔλͷࣗಈௐΛߦ͏
AutoServing %FQMPZ ϦϦʔεޙͷਫ਼ࢹɾRe-TrainingɾRe-Deploy ΛࣗಈͰߦ͏ .POJUPSJOH &WBMVBUJPO )ZQFS QBSBNFUFS PQUJNJ[BUJPO 3F5SBJOJOH
·ͱΊ • MLʹগ͠௨ৗͱҧ͏Πϯϑϥ͕ඞཁʹͳΔ ˠ·ͩϕετɾϓϥΫςΟε͔Βͳ͍ • ͦͦMLͳػೳΛຊ֨ӡ༻͠Α͏ͱ͢Δ ͱɺେ෯ͳࣗಈԽɾΈԽΛਐΊͳ͍ͱ্ ख͘ߦ͔ͳ͍
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠!!