Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mlct.pdf
Search
Hirofumi Nakagawa/中河 宏文
July 23, 2018
Programming
2
2.1k
mlct.pdf
Hirofumi Nakagawa/中河 宏文
July 23, 2018
Tweet
Share
More Decks by Hirofumi Nakagawa/中河 宏文
See All by Hirofumi Nakagawa/中河 宏文
IoTデバイスでMLモデルを動かす技術
hnakagawa
0
200
Kanazawa_AI.pdf
hnakagawa
0
200
メルカリ写真検索における Amazon EKS の活用事例と プロダクトにおけるEdgeAI technologyの展望
hnakagawa
5
9.1k
メルカリの写真検索を支えるバックエンド CCSE 2019 version
hnakagawa
0
340
メルカリ写真検索における Amazon EKS の活用事例
hnakagawa
6
29k
メルカリの写真検索を支えるバックエンド
hnakagawa
1
1.2k
Mercari ML Platform
hnakagawa
1
17k
機械学習によるマーケット健全化施策を支える技術
hnakagawa
0
260
メルカリのマーケット健全化施策を支えるML基盤
hnakagawa
10
9.1k
Other Decks in Programming
See All in Programming
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
250
ゆくKotlin くるRust
exoego
1
200
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.3k
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
310
クラウドに依存しないS3を使った開発術
simesaba80
0
220
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
640
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
190
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
360
Python札幌 LT資料
t3tra
7
1.1k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
ラッコキーワード サービス紹介資料
rakko
0
2M
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
360
The agentic SEO stack - context over prompts
schlessera
0
590
Prompt Engineering for Job Search
mfonobong
0
140
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Docker and Python
trallard
47
3.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
180
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Accessibility Awareness
sabderemane
0
35
Transcript
ϝϧΧϦͷMLج൫ MLCT vol.5 hnakagawa
ࣗݾհ • Hirofumi Nakagawa (hnakagawa) • 20177݄ೖࣾ • ॴଐSRE •
σόΠευϥΠό։ൃ͔Βϑϩϯ τΤϯυ։ൃ·ͰΔԿͰ • NOT σʔλαΠΤϯςΟετ • https://github.com/hnakagawa
͓ࣄ • ML Platform։ൃ • σʔλαΠΤϯςΟετͱSREͷεΩϧΪϟο ϓΛຒΊΔ • ML Reliability,
SysML?, MLOps? • SREͷཱ͔ΒMLγεςϜͷࣗಈԽΛߦ͏
ML Platform • ͷML Platform • kubernetesϕʔε • طଘͷML FrameworkΛ༻͠
؆୯ʹTraining/ServingΛߦ͏ ڥΛఏڙ
ͦͷ͏ͪOSSͰެ։༧ఆ(ଟ
ϝϧΧϦͷMLར༻ࣄྫ • ײಈग़ • ҧग़ݕ • Ձ֨αδΣετ • ΤΠταδΣετ ʑ…
̍ઍສpredictionΛߦ͍ͬͯΔ
ML Platform Architecture ,VCFSOFUFT $POUSPMMFS $-* $MVTUFS8PSLGMPX %BTICPBSE 4UPSBHF(BUFXBZ .FUSJDT
3VOOFS $PNQPOFOU .FSDBSJ.- $PNQPOFOU &YUFSOBM .JEEMFXBSF
Model Training & Serving Workflow
.-1MBUGPSN USBJOJOHDMVTUFS Workflow for Production $* .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ +PC
+PC ɾɾ 3&45 "1* 4USFBNJOH 5'4FSW JOH ɾɾɾ
.-1MBUGPSN USBJOJOHDMVTUFS Training Workflow $* .PEFM3FHJTUSZ +PC +PC ɾɾɾ 1.
GitHubͷpushΛτϦΨʹtrainingΛىಈ 2. Training͞ΕͨModelModel Registry ্͕Δ
Serving Workflow .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ ɾɾ 3&45 "1* 4USFBNJOH 5'
4FSWJOH 1. Model RegistryΛࢹͯࣗ͠ಈͰModel ΛServing 2. Serving&Test͕ޭ͢Δͱຊ൪༻k8s manifestΛग़ྗ
Container Workflow %BUB4PVSDF *NBHF 5FYUɹ 1SFQSPDFT TJOH *NBHF &TUJNBUPS *NBHF
17 17 1JDUVSF 1SFQSPDFT TJOH *NBHF 17 It’s own implementation
Model Serving APIͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM 5' .PEFM 'MBTL
4, .PEFM 4, .PEFM 4, .PEFM gRPC .FSDBSJ"1* REST FlaskͰલॲཧΛߦ͍ ཪͷTensorFlow Servingʹ͍͛ͯΔ
Model Serving API Streaming ver ͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM
5' .PEFM .-1MBUGPSN 'SBNFXPSL PS "QBDIF#FBN 4, .PEFM 4, .PEFM 4, .PEFM gRPC PubSub
ModelͱίϯςφɾΠϝʔδ • ڊେͳML ModelΛίϯςφɾΠϝʔδʹؚΊ Δ͔൱͔ • ؚΊͳ͍ͷͰ͋ΕԿॲʹஔ͢Δ͔ • ϙʔλϏϦςΟੑͱϩʔυ࣌ؒͷτϨʔυΦϑ •
ྑ͍ΞΠσΟΞ͕͋Εڭ͑ͯԼ͍͞…
௨ৗͷAPIͱಛੑ͕ҧ͏ • ѻ͏ϦιʔεɺModelαΠζ͕େ͖͘ͳΔ ߹͕ଟ͍(ඦMBʙGB) • CPUɾϝϞϦϦιʔεͷফඅ͕ܹ͍͠ • ߹ʹΑͬͯGPU͏
ϝϞϦফඅ • ҧݕγεςϜͷPython࣮෦࣮ߦ࣌ ʹ2GBϝϞϦΛফඅ͢Δˠࠓޙ͞Βʹ૿͑ Δ༧ఆ͋Δ • Scikit-learnͰهड़͞Εͨલॲཧ෦͕େ͖͘ ͳΓ͕ͪ
Pythonͱฒྻੑ • વThread͕͑ͳ͍(GILͷͨΊ) • ϓϩηεຖʹModelΛϩʔυ͢Δͱඞཁͳϝ ϞϦαΠζ͕େ͖͘ͳΔˠ Blue-Green DeployͷোʹͳΔ
ਖ਼PythonͰͷServing Πϯϑϥతʹਏ͍ࣄ͕ଟ͍…
ϝϞϦΛݡ͘͏ • fork͢ΔલʹmodelΛϩʔυ͠Copy on Write Λޮ͔͢ • k8sͷone process per
containerηΦϦ͋ ͑ͯഁ͍ͬͯΔ
Copy On Writeͷ෮श ϝϞϦ ϓϩηε ࢠϓϩηε 2.fork 1BHF" 1.allocation ಉ͡ྖҬΛࢀর
ϓϩηε͕ϝϞϦͷ༰Λ ॻ͖͑Δͱ… ϝϞϦ ϓϩηε ࢠϓϩηε 1BHF" 1BHF# OS͕ผͷྖҬΛAllocationͯ͠ݩσʔλΛίϐʔ͢Δ ผͷྖҬΛࢀর
Current Issues
ߴͳܧଓతϝϯςφϯε͕ඞཁ • MLػೳσʔλͷ͕มΘͬͨΓɺ༧֎ ͷ͕ൃੜͨ͠Γͯ͠ɺͦΕΒʹରԠ͠ଓ ͚Δඞཁ͕͋Δ MLػೳϦϦʔεޙେ͖ͳ ίετ͕͔͔Γଓ͚Δ
େ෯ͳࣗಈԽ͕ඞਢ
In Progress
ߴͳࣗಈԽ • ࣾͷσʔλ͔ΒFeature Extraction͢Δ࣮ ΛίϯϙʔωϯτԽ • ಛఆͷΛղܾ͢ΔϞσϧߏஙΛ͋Δఔ ࣗಈԽ • ϦϦʔεޙͷRe-TrainingɺHyper
parameter optimizationɺDeployΛࣗಈԽ
AutoFlow 'FBUVSF&YUSBDUJPO $PNQPOFOUT $MBTTJGJDBUJPO $PNQPOFOUT $PODBUFOBUJPO $PNQPOFOUT .PEFM #VJMEFS $PNQPOFOUT
3FHJTUSZ Ϋϥελ্ͰϞσϧͷࣗಈߏஙͱϋΠύʔύϥ ϝʔλͷࣗಈௐΛߦ͏
AutoServing %FQMPZ ϦϦʔεޙͷਫ਼ࢹɾRe-TrainingɾRe-Deploy ΛࣗಈͰߦ͏ .POJUPSJOH &WBMVBUJPO )ZQFS QBSBNFUFS PQUJNJ[BUJPO 3F5SBJOJOH
·ͱΊ • MLʹগ͠௨ৗͱҧ͏Πϯϑϥ͕ඞཁʹͳΔ ˠ·ͩϕετɾϓϥΫςΟε͔Βͳ͍ • ͦͦMLͳػೳΛຊ֨ӡ༻͠Α͏ͱ͢Δ ͱɺେ෯ͳࣗಈԽɾΈԽΛਐΊͳ͍ͱ্ ख͘ߦ͔ͳ͍
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠!!