Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ログから始めるオブザーバビリティ
Search
Takanobu Hoshino
May 29, 2024
Programming
0
730
ログから始めるオブザーバビリティ
Japan Datadog User Group Meetup#4
https://datadog-jp.connpass.com/event/317091/
Takanobu Hoshino
May 29, 2024
Tweet
Share
More Decks by Takanobu Hoshino
See All by Takanobu Hoshino
事業フェーズの変化を乗り越えるEnabling/Platform SREへの転換
hosht
1
3.9k
TrivyでAWSセキュリティをシフトレフトしよう
hosht
0
24
Other Decks in Programming
See All in Programming
実践ArchUnit ~実例による検証パターンの紹介~
ogiwarat
2
250
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
1
630
iOSアプリ開発で 関数型プログラミングを実現する The Composable Architectureの紹介
yimajo
2
210
Go Modules: From Basics to Beyond / Go Modulesの基本とその先へ
kuro_kurorrr
0
110
生成AIコーディングとの向き合い方、AIと共創するという考え方 / How to deal with generative AI coding and the concept of co-creating with AI
seike460
PRO
1
190
イベントストーミングから始めるドメイン駆動設計
jgeem
4
810
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
110
Perplexity Slack Botを作ってAI活用を進めた話 / AI Engineering Summit プレイベント
n3xem
0
640
PT AI без купюр
v0lka
0
230
2度もゼロから書き直して、やっとブラウザでぬるぬる動くAIに辿り着いた話
tomoino
0
160
赤裸々に公開。 TSKaigiのオフシーズン
takezoux2
0
130
つよそうにふるまい、つよい成果を出すのなら、つよいのかもしれない
irof
1
280
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Fireside Chat
paigeccino
37
3.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
780
Designing for Performance
lara
609
69k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
4 Signs Your Business is Dying
shpigford
184
22k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
Copyright © 2024 Bitkey Inc. All right reserved. ログから始めるオブザーバビリティ Japan
Datadog User Group Meetup#4 株式会社ビットキー 星野貴信 2024/05/29
2 Copyright © 2024 Bitkey Inc. All right reserved. Outline
1. オブザーバビリティのおさらい 2. Datadogのメトリクス 3. Datadogのログ 4. Datadogのトレース 5. まとめ
3 Copyright © 2024 Bitkey Inc. All right reserved. 株式会社ビットキー
SREとして入社。主にオブザーバビリティ、CI/CDを担 当する。SETとしてサービス品質向上の活動もしてい る 自己紹介 星野 貴信 Hoshino Takanobu 2020.01 2022.11~ 株式会社LCL バックエンドエンジニアとしてサービス運用改善を中 心にAWS、Terraform、GitHub Actions、Mackerelの 活用をリード
4 Copyright © 2024 Bitkey Inc. All right reserved. 1.
オブザーバビリティのおさらい
5 Copyright © 2024 Bitkey Inc. All right reserved. 1.
オブザーバビリティのおさらい APM ≠ o11y オブザーバビリティはトレースを中心に語られる印象 (n=1の感想です) つまり、DatadogのオブザーバビリティはApplication Performance Monitoring(APM)ってコト?
6 Copyright © 2024 Bitkey Inc. All right reserved. 1.
オブザーバビリティのおさらい APM ≠ o11y オブザーバビリティはトレースを中心に語られる印象 (n=1の感想です) つまり、DatadogのオブザーバビリティはApplication Performance Monitoring(APM)ってコト? 🙅
7 Copyright © 2024 Bitkey Inc. All right reserved. 1.
オブザーバビリティのおさらい オブザーバビリティとは? 「ソフトウェアアプリケーションにオブザーバビリティを持たせるためには、次のことができなければなり ません。 アプリケーションの内部構造を理解する 今まで見たことのない、予測できないことが起こったとしても、アプリケーションがどのようなシステム状 態に陥っているかを理解する 外部ツールを使って観測し、調査することで、内部動作とシステム状態を理解する 新たにコードを改修 することなく 、内部状態を理解する (コードを改修するには何が起こるかをあらかじめ知っている必要があるため)」 『オブザービリティ・エンジニアリング』 1.2 オブザーバビリティのソフトウェアシステムへの適用
8 Copyright © 2024 Bitkey Inc. All right reserved. 1.
オブザーバビリティのおさらい オブザーバビリティとは? 「今まで見たことのない、予測できないことが起こったとしても、アプリケーションがどのようなシステム 状態に陥っているかを理解する」 「外部ツールを使って観測し、調査することで、内部動作とシステム状態を理解する」 こちらの2点についてDatadogのメトリクス、ログ、トレースにオブザーバビリティの特性が備わっている かそれぞれ見ていきます 特に、探索的にアプリケーションを調査できるかの観点をチェックします
9 Copyright © 2024 Bitkey Inc. All right reserved. 2.
Datadogのメトリクス
10 Copyright © 2024 Bitkey Inc. All right reserved. 2.
Datadogのメトリクス • Metric Explorerから探索的にクエリが可能 • パブリッククラウドとのインテグレーションや dd-agentの機能でメトリクスの取得は非常に容易 • DogStatsDなどを活用してカスタムメトリクスを 送信すればアプリケーションの内部情報も取得できる • メトリクス選択にワイルドカードが 利用できないため大量のメトリクスを 一気に調べることは難しい 所感: メトリクス単体ではオブザーバビリティの獲得は難しい オブザーバビリティの観点からみたメトリクス
11 Copyright © 2024 Bitkey Inc. All right reserved. 3.
Datadogのログ
12 Copyright © 2024 Bitkey Inc. All right reserved. 3.
Datadogのログ オブザーバビリティの観点からみたログ • Logs Explorerから探索的にクエリすることが可能 • ログを時系列で並べるだけでなくフィールド毎や メッセージパターン毎のように集計クエリで 強力に可視化をサポートできる • 左カラムのFacetsを展開してメタデータ毎に 出現回数を俯瞰したり、絞り込みに利用可能 • Reference TableとJoinすることでさらに 外部データを結合して情報量を増やせる • 構造化ログや例外キャッチなど事前の準備が多め • 欲しいログ出力のためにアプリケーション改修が必要になることもある 所感: 構造化ログを意識してログを送信することで、Datadogの機能を活かしたクエリが可能
13 Copyright © 2024 Bitkey Inc. All right reserved. 4.
Datadogのトレース
14 Copyright © 2024 Bitkey Inc. All right reserved. 4..
Datadogのトレース • Trace Queryによるしたサービス全体の俯瞰と Span単位の詳細分析が利用できる • 複数Traceを紐づけることでサービス間の関係を 可視化してボトルネックを分析できる • dd-traceやOpenTelemetry Collectorを利用して 少ない実装コストでデータの収集が可能 • 集計機能はログと比較してやや弱めか • Flame Graphの表示はSpan数の増大とDurationが 長い場合にスクロールが煩雑になる印象 所感: トレースはマイクロサービスのように、複数サービスをまたがるアプリケーションの俯瞰に強い一方、 探索的にクエリする際に、UIがログと比較してやや弱い印象 オブザーバビリティの観点からみたトレース
15 Copyright © 2024 Bitkey Inc. All right reserved. 5.
まとめ
16 Copyright © 2024 Bitkey Inc. All right reserved. 5.
まとめ 探索的な調査の能力でみたDatadogのオブザーバビリティ • オブザーバビリティの獲得に重要な、探索的なクエリによるアプリケーションの調査において、 Datadogではメトリクスとログとトレースを比較した際に、ログが使いやすい感触を得た • まずはログの収集に力を入れてから、トレースに進むとログとトレースの紐付けで隙がなくなる 未解決の課題: サンプリングによるログに紐づいていて欲しいトレースが無い問題 • ログデータ増加に耐えるコスト面の工夫は、またの機会があれば紹介したい
17 End of File Copyright © 2024 Bitkey Inc. All
right reserved.