Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RPNを完全に理解しよう
Search
Ryunosuke-Ikeda
July 28, 2021
Technology
1
340
RPNを完全に理解しよう
あまり詳しく解説されないFaster R-CNNのRPN(Region Proposal Network)を具体的なデータの形状を確認しながら理解しよう.
Ryunosuke-Ikeda
July 28, 2021
Tweet
Share
More Decks by Ryunosuke-Ikeda
See All by Ryunosuke-Ikeda
映像情報を活用した次世代のAIアシスタントシステム"Salieri" 資料
imr0305
0
160
Open Hack U 発表資料(チームうどん)
imr0305
0
54
JPHacks2021 発表資料(チームうどん)
imr0305
0
47
自己紹介スライド
imr0305
1
1.9k
技育展2021 発表資料(チームうどん)
imr0305
0
36
RLSP2021資料
imr0305
0
220
技育展2020 登壇資料(チームうどん)
imr0305
0
190
Other Decks in Technology
See All in Technology
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
1.7k
Oracle Cloud Infrastructure:2025年12月度サービス・アップデート
oracle4engineer
PRO
0
180
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
750
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
290
AI with TiDD
shiraji
1
330
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
7
3.5k
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
660
AWS re:Invent2025最新動向まとめ(NRIグループre:Cap 2025)
gamogamo
0
150
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
670
Digitization部 紹介資料
sansan33
PRO
1
6.4k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
0
680
Skip the Path - Find Your Career Trail
mkilby
0
37
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
130
Building an army of robots
kneath
306
46k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
A designer walks into a library…
pauljervisheath
210
24k
The SEO identity crisis: Don't let AI make you average
varn
0
45
BBQ
matthewcrist
89
9.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
80
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Transcript
RPNを完全に理解しよう Ryunosuke Ikeda 1
よくある説明 ①K種類のアンカーボックスを用意する。 ②Sliding Windowで各アンカーボックスの 物体らしさと座標のオフセットを回帰 → CNNどこ? 学習どうするの?? 具体的な形状は?? 何か改善案はないだろうか?
RPNってなにしてるん? 2
・Torch VisionのFaster R-CNNのコードをベースにRPNの詳しい処理手順を 確認した。 ・入力画像は3*1280*720とする。 ・バッチサイズは1とする。 前提条件 3
RPN概略図 RPN CNN reg CNN cls CNN RPN Head Anchor
Generator NMS RPN 特徴マップ reshape reshape 4
バックボーンからRPNHead 特徴マップ 42 24 1280 CNN Reg_CNN Cls_CNN RPN Head
3*3conv [1,1280,24,42] [b,C,H,W] 1*1conv 1*1conv [1,1280,24,42] [1,60,24,42] [1,15,24,42] ①特徴抽出CNN 3*3conv , stride=padding=1 特徴抽出を行う。 この部分がSliding Windowに対応 論文実装はここでC=512に圧縮してる ②座標オフセット回帰CNN 1*1conv , stride=1, padding=0 アンカーの種類(15種類)と座標(xyxy) の15*4=60次元に圧縮 ②物体、背景クラス分類CNN 1*1conv , stride=1, padding=0 アンカーの種類(15種類) の15次元 に圧縮 Objectness Pred_bbox 5
出力形状の意味(Cls_CNN) 24 (H) 42 (W) 15 (アンカーの種類) 右図のオレンジの値は特徴マップの[1,1]の部分に1種類目の アンカーボックスを適用した時のObjectnessを直接予測している。
同様に緑の部分は特徴マップ[1,42]の部分に2種類目の アンカーボックスを適用した時のObjectnessを予測 各アンカーの特徴量を抽出しCNNに入力しているわけではない Cls_CNNの出力 ・ アンカーのイメージ (実際は特徴マップ) ・ 6
RPN Head Cls_CNN:各アンカーが物体か否かを予測 Reg_CNN:各アンカーを物体のボックスへと近づけるにはどれくらいずらせばよ いか学習。 CNN Reg_CNN Cls_CNN
RPN Head 3*3conv 1*1conv 1*1conv [1,1280,24,42] [1,60,24,42] [1,15,24,42] Objectness Pred_bbox 7
Anchor Generator 特徴マップの各要素にアンカーを配置した際のアンカーの座標値を取得。 この際の座標値は入力画像のスケールのもの 出力形状は[15*24*42,4]=[15120,4] Anchor Generator
入力画像 特徴マップ [1,1280,24,42] [1,3,720,1280] [15120,4] Anchors 8
Proposalsの作成 Reg_CNNで取得したアンカーボックス座標のオフセット値(相対座標)を アンカーボックスに足し合わせる。 →ずらした後の絶対座標が得られる。 Anchors Pred_bbox [1,60,24,42] [15120,4] [15120,4]
reshape [15120,4] Proposals 9
NMS NMSにかける前にObjectnessの上位2000個のproposalsを抽出 抽出した2000個に対してNMSをかけてboxを削減 Objectness [1,15,24,42] [15120,4] reshape [15120,1]
Proposals NMS Objectnessの 上位2000位の Proposalsを抽出 [2000,4] [2000-N,4] 10
RPN CNN reg CNN cls CNN RPN Head Anchor Generator
NMS RPN 特徴マップ reshape reshape 入力画像 [1,1280,24,42] [1,3,720,1280] [1,1280,24,42] [1,60,24,42] [1,15,24,42] [15120,4] [15120,4] [15120,4] [15120,1] [2000-N,4] 11
RPNの学習 Cls_CNNの教師データはもともとのアノテーションには存在しない為、作成する 必要がある。 全アンカーボックス中からGraund TruthとのIoU値が0.3以下であるなら背景(0) 0.7以上であるなら物体(1)とラベルとつける。 残りの部分は学習対象にはならない.(無視のラベルを付ける。)
GT 1 0 12
Lossの測り方(Regの例) NMSにかける前のpropとobjectnessを用いてLossを測る。 作成したTargetに物体ラベルがついているインデックスの値を抽出し、 そのインデックスの予測値とのLossを測る。 [112,85,115,95] Target_bbox [20,30,50,40] …
… Pred_bbox [24,32,50,42] [110,80,120,90] GTが 物体ラベルである インデックスの値 L1smooth Loss イメージ (実際は正規化された値) 13
14 Ryunosuke Ikeda Tokyo Denki University M1 THANK YOU!