Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第160回 雲勉 それ、AWS Step Functions で置き換えれん?
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
iret.kumoben
May 02, 2025
Technology
0
140
第160回 雲勉 それ、AWS Step Functions で置き換えれん?
下記、勉強会での資料です。
https://youtu.be/q48oBNnbj64
iret.kumoben
May 02, 2025
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第182回 雲勉 【Gemini 3.0 Pro】AI ベンチマーク徹底比較!他モデルに比べ優れている点まとめ
iret
0
41
第181回 雲勉 WEB制作者のちょっとした面倒をAWSで解決!Amazon S3とAWS Lambda活用術
iret
0
44
第180回 雲勉 Abuse report の調査・確認方法について
iret
0
69
第179回 雲勉 AI を活用したサポートデスク業務の改善
iret
0
100
第178回 雲勉 Amazon EKSをオンプレで! Amazon EKS Anywhere 実践構築ガイド
iret
1
69
第177回 雲勉 IdP 移行を楽に!Amazon Cognito でアプリへの影響をゼロにするアイデア
iret
0
78
第176回 雲勉 VPC 間サービス接続を考える!Private Service Connect 入門
iret
0
62
第175回 雲勉 Amazon ECS入門:コンテナ実行の基本を学ぶ
iret
0
96
第174回 雲勉 Google Agentspace × ADK Vertex AI Agent Engineにデプロイしたエージェントを呼び出す
iret
0
140
Other Decks in Technology
See All in Technology
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
190
GCASアップデート(202510-202601)
techniczna
0
250
MySQLのJSON機能の活用術
ikomachi226
0
140
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
540
Webhook best practices for rock solid and resilient deployments
glaforge
1
240
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
160
AI時代、1年目エンジニアの悩み
jin4
1
160
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
【インシデント入門】サイバー攻撃を受けた現場って何してるの?
shumei_ito
0
1.4k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
200
Tebiki Engineering Team Deck
tebiki
0
24k
Featured
See All Featured
KATA
mclloyd
PRO
34
15k
Being A Developer After 40
akosma
91
590k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
59
42k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
280
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Done Done
chrislema
186
16k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
53
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Producing Creativity
orderedlist
PRO
348
40k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Transcript
2025/4/27 アイレット株式会社 アジャイル事業部 IoTセクション 第160回 雲勉 それ、AWS Step Functions で置き換えれん?
2 自己紹介 名前:北野 涼平(ヤマダ) 所属:アジャイル事業部 IoTS IoTBG 趣味:LT、プリン、読書 愛S:Figma、AWS Fault
Injection Service プロフィール
3 AWS Lambda 使ってますか?
4 AWS Lambda 使ってますか? • サーバーレス • サーバーを管理することなく、高可用性と耐障害性を実現 • 組み込みのログ記録・モニタリング機能
• スケーリング • 従量課金制 →色々あると思います AWS Lambda を使うメリット
5 デメリットはあるのか?
6 AWS Lambda 使ってますか? • プログラミング言語の知識が必要 • 高い専門性 • ランタイムのサポート廃止(Python3.9も2025年11月廃止予定)
• 複数の AWS Lambda を使用する場合は複雑になる • 実行時間の上限 →中でもランタイムのサポートは思っているより早いです AWS Lambda を使うデメリット
7 なるべくなら使いたくない…!
8 AWS Step Functions に 置き換えられないか考えてみよう!
9 アジェンダ • AWS Step Functions を採用するメリットについて • JSONata について
• 実際に使ってみた話 今回お話すること • 細かい設定値 • プロンプトなど 話さないこと
10 AWS Step Functions とは
11 AWS Step Functions とは • AWS提供のマネージドサービス • ワークフローとして各サービスを連携できる •
非常に多くのサービスに対応 <北野の偏見> Map処理したい時とか、 複雑な処理分岐にしか使ってはいけないのでは? AWS Step Functions とは ソンナコトナイヨ!
12 AWS Step Functions とは • 処理の可視化 • ワークフローがとっても視覚的! •
プログラミング言語の知識がなくても見れる(?) • ちょっとした処理は JSONata が吸収 • 自動スケーリング • ランタイムのサポートを気にしなくていい! • 非同期処理を作りやすい • AWS Lambda や Amazon API Gateway の タイムアウトから解放 AWS Step Functions のメリット
13 実際に使ってみる
14 実際に使ってみる 構成図 実行時間に一抹の不安
15 実際に使ってみる 構成図 APIのレスポンスはすぐ来る
16 実践
17 実践 • フローが目で見える • 関連サービスがわかりやすい 処理の可視化(ワークフロー)
18 実践 • JSONata でちょっとした処理を吸収 • プロンプトを工夫したり、結果を入れる際の一手間など 処理の可視化(JSONata)
19 実践 JSONata とは • AWS Step Functions には2024年11月に追加 •
JSONデータの軽量クエリおよび変換言語 • JSONオブジェクトの複雑なデータ操作が可能 • フローの中間ステートが不必要になった! 処理の可視化(JSONata)
20 実践 • エラーによって細かく制御が可能 • Amazon DynamoDB でエラーが あったら Fail
、なければ API 呼び出しが視覚的 処理の可視化(エラーハンドリング) タイムアウトなどのエラーに よって分岐を指定できる
21 実践 処理の可視化(エラーハンドリング) 通ってきた処理が色づく アクションをクリック して原因を究明
22 実践 • アクションを選択 • AWS Lambda の時のように 言語を気にしない ランタイムのサポート
23 実践 • curl で API を実行 • わざわざ書くほどのことでもないが、Slack に通知がきた
• 生成AIなど、実行時間を予測しづらい時に◎ 非同期処理
24 まとめ
25 まとめ • 多くのサービスに対応し、処理の分岐も作りやすい • ワークフローを視覚的に表現 • エラーハンドリングも見やすく、原因調査もしやすい • 生成AIとの相性がよい
• 非同期処理 • Amazon Bedrock アクションも豊富 • 簡単な処理は JSONata が吸収 • プログラム風だが、慣れれば簡単(?) AWS Step Functions を使ってみた
26 まとめ もちろん AWS Lambda や別のアプローチのほうが良い場合も ありますが、AWS Step Functions を使用するメリットを理解
し、採用を検討してみてください。 私は並行処理や AWS Lambda を複数扱うためでしか使わない 方がいいのかなと思っていました。実際に触ってみるとワー クフローは視覚的であり、アクションも豊富でむしろ簡単な 処理にこそ向いているのではと思ったほどです! AWS Step Functions を使ってみた
27 まとめ お話したこと • AWS Step Functions を採用するメリットについて • JSONata
について • 実際に使ってみた話 今回作成した構成について、 iret.media にて詳細に記事にしようと思います! AWS Step Functions を使ってみた
28 ありがとうございました!