거대 언어 모델이라고도 불림 • LLM은 인공 신경망 기반의 언어 모델이며, 방대한 양의 텍스트 데이터로 훈련됨 • 활용 예시 ◦ 챗봇: 질문에 답하고 대화를 나눌 수 있음 ◦ 텍스트 요약: 긴 문서를 짧게 요약 가능 함 ◦ 번역: 한 언어를 다른 언어로 번역할 수 있음 ◦ 작문: 창의적인 글쓰기, 코드 작성 등을 수행할 수 있음 6
텍스트 데이터를 학습하여 인간 수준의 언어 능력을 갖춘 모델 인공지능이 인간의 언어를 이해하고 처리하는 기술 특징 - 방대한 텍스트 데이터 학습 - 다양한 NLP 작업 수행 - 인간 수준의 언어 능력 - 챗봇, 기계번역, 감정 분석 등 다양한 분야 활용 - 다양한 기술 사용 관계 NLP 기술의 하위 기술 LLM은 NLP 기술 발전에 중요한 역할
of LLMs in Practice: A Survey on ChatGPT and Beyond The evolutionary tree of modern LLMs traces the development of language models in recent years and highlights some of the most well-known models. Models on the same branch have closer relationships. Transformer-based models are shown in non-grey colors: decoder-only models in the blue branch, encoder-only models in the pink branch, and encoder-decoder models in the green branch. The vertical position of the models on the timeline represents their release dates. Open-source models are represented by solid squares, while closed-source models are represented by hollow ones. The stacked bar plot in the bottom right corner shows the number of models from various companies and institutions. 10
Today, we’re sharing details on two versions of our 24,576-GPU data center scale cluster at Meta. we’re aiming to continue to grow our infrastructure build-out that will include 350,000 NVIDIA H100 GPUs as part of a portfolio that will feature compute power equivalent to nearly 600,000 H100s. https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
24,576-GPU data center scale cluster at Meta. 24576 * 60000000 = 1,474,560,000,000 (약 1조 4천억 원) we’re aiming to continue to grow our infrastructure build-out that will include 350,000 NVIDIA H100 GPUs as part of a portfolio that will feature compute power equivalent to nearly 600,000 H100s. 21,000,000,000,000원 (약 21조 원)
is built to handle extremely long contexts; it has the ability to recall and reason over fine-grained information from up to at least 10M (10,000,000) tokens. • Gemini 1.5 Pro surpasses Gemini 1.0 Pro and performs at a similar level to 1.0 Ultra on a wide array of benchmarks while requiring significantly less compute to train.
AI Dart SDK beta release • The Google AI Dart SDK has been released to beta. This enables you to build generative AI features into your Dart or Flutter app, powered by Gemini, Google’s latest family of AI models. There is now a google_ generative_ai package on pub.dev. • Learn more about how to build with the Google AI Dart SDK in this blog post or jump straight into the Dart quickstart.
Variation Attribute Description Gemini 1.5 Pro (Preview only) Model last updated February 2024 Model code models/gemini-1.5-pro Model capabilities • Input: text and image • Output: text • Optimized for language tasks such as: • Code generation • Text generation • Text editing • Problem solving • Recommendations generation • Information extraction • Data extraction or generation • AI agent • Can handle zero, one, and few-shot tasks. Supported generation methods generateContent Input token limit 1,048,576 Output token limit 8192 Model safety Automatically applied safety settings which are adjustable by developers. See the safety settings topic for details. Rate limit 1 query per minute, 50 queries per day [1]
text-and-image input (multimodal), use the gemini-pro-vision model final model = GenerativeModel(model: 'gemini-pro-vision', apiKey: apiKey); final (firstImage, secondImage) = await ( File('image0.jpg').readAsBytes(), File('image1.jpg').readAsBytes() ).wait; final prompt = TextPart("What's different between these pictures?"); final imageParts = [ DataPart('image/jpeg', firstImage), DataPart('image/jpeg', secondImage), ]; final response = await model.generateContent([Content.multi([prompt, ...imageParts])]); print(response.text); }
text-and-image input (multimodal), use the gemini-pro-vision model final model = GenerativeModel(model: 'gemini-pro-vision', apiKey: apiKey); final (firstImage, secondImage) = await ( File('image0.jpg').readAsBytes(), File('image1.jpg').readAsBytes() ).wait; final prompt = TextPart("What's different between these pictures?"); final imageParts = [ DataPart('image/jpeg', firstImage), DataPart('image/jpeg', secondImage), ]; final response = await model.generateContent([Content.multi([prompt, ...imageParts])]); print(response.text); }
text-and-image input (multimodal), use the gemini-pro-vision model final model = GenerativeModel(model: 'gemini-pro-vision', apiKey: apiKey); final (firstImage, secondImage) = await ( File('image0.jpg').readAsBytes(), File('image1.jpg').readAsBytes() ).wait; final prompt = TextPart("What's different between these pictures?"); final imageParts = [ DataPart('image/jpeg', firstImage), DataPart('image/jpeg', secondImage), ]; final response = await model.generateContent([Content.multi([prompt, ...imageParts])]); print(response.text); }
family of lightweight, state-of-the art open models built from the same research and technology used to create the Gemini models @source: https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf