Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スタートアップが挑むクラウドネイティブなマルチリージョン戦略
Search
izumiiii
November 28, 2023
Technology
0
210
スタートアップが挑むクラウドネイティブなマルチリージョン戦略
Google Cloud Next Tokyo 2023 - Innovators Hive Lightning Talk
izumiiii
November 28, 2023
Tweet
Share
More Decks by izumiiii
See All by izumiiii
CircleCIの実行時間を大幅に短縮した話
izumiiii
0
110
GKE Autopilotのコストを9000円/日から2000円/日へ!
izumiiii
0
770
Multi-cluster deployment using ArgoCD x Connect Gateway
izumiiii
0
280
Other Decks in Technology
See All in Technology
First-Principles-of-Scrum
hiranabe
3
1.3k
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
I tried making a solo advent calendar!
zzzzico
0
130
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
360
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
200
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
820
産業的変化も組織的変化も乗り越えられるチームへの成長 〜チームの変化から見出す明るい未来〜
kakehashi
PRO
1
300
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
370
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
10
4.1k
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
160
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
880
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
YesSQL, Process and Tooling at Scale
rocio
174
15k
So, you think you're a good person
axbom
PRO
0
1.9k
WENDY [Excerpt]
tessaabrams
9
35k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
400
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Technical Leadership for Architectural Decision Making
baasie
0
200
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
140
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
スタートアップが挑むクラウドネイティブなマルチリージョン戦略 Google Cloud Next Tokyo 2023 - Innovators Hive Lightning
Talk
自己紹介 名前 Koizumi Fumiya Twitter izumiiii @izumiiii9 Blog https://izumiiii.com Zenn
https://zenn.dev/izumiiii 会社 株式会社Resilire 普段していること インフラ業務メインで、最近はよくKubernetesを触っています。
提供プロダクト Resilreの提供価値と機能 3 サプライチェーンリスク管理SaaS Resilire サプライチェーン全体(社内拠点や委託先、原料 調達先)をツリー上で構造的に管理。災害時、被 災影響の可能性がある拠点をマップ上で可視化・ リスト化。リストの拠点に自動でアンケート配信か ら回答結果のレポート生成を可能にするプロダク
トを提供しています。 3
インフラの重要性 • Resilireは災害時のリスク管理を行うプロダクトのため、平常時の予防よりも特に災害時にも 動作し続ける必要があります。 • 例えば、震災があったとしたら、納入先とサプライヤーの間で物流・生産に影響がないかをResilireのプ ロダクトを通して確認しあうような形で使われます。 • サプライヤーは海外にいることも多いため、グローバルに利用継続性を高める必要があり、 災害時にグローバルでも動作し続けられる基盤作りにチャレンジする必要があります。
急成長に伴う課題の発生 • 費用、人員、時間の制限 ◦ 少数の開発組織でありながら、決められた期間内にサービスをリリースする必要性があった。 • 既存システムの管理コストの増大 ◦ デプロイシステムのコード量が増加し、保守コストが増えた。 •
新アプリケーションとサービスの増加 ◦ リアーキテクチャのサービスの洗い出しによって、サービス数が増えた。また、グローバルに耐えうるシステム 構成が必要であった。
我々が挑むマルチリージョン戦略のシステム
GCPサービス
Google Kubernetes Engine Autopilot • アプリケーションに専念 ◦ Googleがインフラストラクチャを管理するため、エンジニアはアプリケーションに専念。 • 運用の複雑さの軽減
◦ Autopilot は、ノード、スケーリング、スケジューリングのオペレーションを継続的にモニ タリングする必要がないため、プラットフォームの管理オーバーヘッドを削減。 Resilire では、少数の開発組織のため運用の簡素化された Autopilot が適している。
マルチクラスタ Ingress • グローバル負荷分散 ◦ ユーザートラフィックを最も効率的で効果的なクラスタやリージョンに自動的にルーティン グ。 • リージョナルな冗長性と可用性の向上 ◦
複数のリージョンにクラスタを展開することで、リージョナルな冗長性と高可用性を実現。 Resilireではグローバル展開を想定しているため、有効な手段。
Managed Anthos Service Mesh • クラスター間をサービスメッシュを設けることで、クラスター間通信、可用性の向上、トラフィッ ク分散、サーキットブレイカーを行うことができる。 • Resilireでは、クラスタ間の負荷分散、BCP対策として活用。
東京クラスタ 大阪クラスタ ??クラスタ 海外
Spot Pod for Autopilot vCPU, Memory当たり1/3程度の料金で使える。 注意点: 標準の Pod の実行でコンピューティングリソースが必要になると、GKE
に よって強制削除される場合がある。
apiVersion: apps/v1 kind: Deployment metadata: name: argocd-repo-server spec: template: spec:
containers: - name: argocd-repo-server nodeSelector: cloud.google.com/gke-spot: 'true' terminationGracePeriodSeconds: 25 設定例
リソースリクエスト Autopilotでのノードのインスタンスタイプ/ノード数は実際にクラスタにデプロイ されているPodに設定されたRequest量をもとに決定されている。 明示的にリソース量をマニフェストで指定していない場合、1コンテナあたり 0.5 vCPU, 2GiB Memoryが割り当てられる。
注意点 Autopilotでは1Podあたり最低 CPU: 250m メモリ: 0.5 GiB を割り当てないといけない。 それより小さい値を指定していても、値が変わらないようになっている。
apiVersion: apps/v1 kind: Deployment metadata: name: argocd-repo-server spec: template: spec:
containers: - name: argocd-repo-server resources: requests: cpu: 250m memory: 512Mi 設定例
まとめ • GKE Autopilotを使うことによって、複雑な管理コストを減らして、アプリケーションに専念。 • マルチクラスタIngress, Anthos Service Meshを使うことで、BCP対策を意識したり、グローバルユー ザーを意識したレイテンシの改善を行うことができる。
• Spot Pod,リソースリクエストを使うことで、簡単な編集でコストを削減してGKEを運用することができる。
ご清聴ありがとうございました。