Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
230
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
370
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
570
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
860
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
0
150
Tokyo_reInforce_2025_recap_iam_access_analyzer
hiashisan
0
190
いつの間にか入れ替わってる!?新しいAWS Security Hubとは?
cmusudakeisuke
0
130
PO初心者が考えた ”POらしさ”
nb_rady
0
210
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
3
9.6k
Flutter向けPDFビューア、pdfrxのpdfium WASM対応について
espresso3389
0
130
整頓のジレンマとの戦い〜Tidy First?で振り返る事業とキャリアの歩み〜/Fighting the tidiness dilemma〜Business and Career Milestones Reflected on in Tidy First?〜
bitkey
3
17k
Enhancing SaaS Product Reliability and Release Velocity through Optimized Testing Approach
ropqa
1
240
B2C&B2B&社内向けサービスを抱える開発組織におけるサービス価値を最大化するイニシアチブ管理
belongadmin
2
7.2k
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
1
160
OpenTelemetryセマンティック規約の恩恵とMackerel APMにおける活用例 / SRE NEXT 2025
mackerelio
1
150
OSSのSNSツール「Misskey」をさわってみよう(右下ワイプで私のOSCの20年を振り返ります) / 20250705-osc2025-do
akkiesoft
0
170
Featured
See All Featured
Balancing Empowerment & Direction
lara
1
430
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How to Ace a Technical Interview
jacobian
278
23k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Unsuck your backbone
ammeep
671
58k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Being A Developer After 40
akosma
90
590k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Why Our Code Smells
bkeepers
PRO
336
57k
Embracing the Ebb and Flow
colly
86
4.7k
The Invisible Side of Design
smashingmag
301
51k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.