$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
430
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
600
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
680
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
91
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
0
180
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
200
特別捜査官等研修会
nomizone
0
560
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
110
Kiro を用いたペアプロのススメ
taikis
4
1.8k
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
140
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
240
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
220
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
260
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
AI: The stuff that nobody shows you
jnunemaker
PRO
1
17
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
The Cult of Friendly URLs
andyhume
79
6.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Mobile First: as difficult as doing things right
swwweet
225
10k
Site-Speed That Sticks
csswizardry
13
1k
Documentation Writing (for coders)
carmenintech
77
5.2k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.