Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
410
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
890
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
86
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
4
2.6k
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
180
日本のソブリンAIを支えるエヌビディアの生成AIエコシステム
acceleratedmu3n
0
120
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
420
2025/10/27 JJUGナイトセミナー WildFlyとQuarkusの 始め方
megascus
0
110
Mackerelにおけるインシデント対応とポストモーテム - 現場での工夫と学び
taxin
0
110
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
250
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
220
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
650
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
110
プロダクトエンジニアとしてのマインドセットの育み方 / How to improve product engineer mindset
saka2jp
1
130
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
26
17k
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
Documentation Writing (for coders)
carmenintech
76
5.1k
Building Adaptive Systems
keathley
44
2.8k
The Cult of Friendly URLs
andyhume
79
6.7k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Six Lessons from altMBA
skipperchong
29
4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Mobile First: as difficult as doing things right
swwweet
225
10k
Into the Great Unknown - MozCon
thekraken
40
2.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
4 Signs Your Business is Dying
shpigford
186
22k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.