Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
220
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
350
Firebase-React-App
izuna385
0
240
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
560
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
650
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
840
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
82
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
550
Other Decks in Technology
See All in Technology
AOAI で AI アプリを開発する時にまず考えたいこと
mappie_kochi
1
770
20 Years of Domain-Driven Design: What I’ve Learned About DDD
ewolff
1
400
木を見て森も見る-モジュールが織りなすプロダクトの森
kworkdev
PRO
0
260
計測による継続的なCI/CDの改善
sansantech
PRO
7
2.1k
名単体テスト 禁断の傀儡(モック)
iwamot
PRO
1
320
大規模サーバーレスプロジェクトのリアルな零れ話
maimyyym
3
260
RubyKaigi NOC 近況 2025
sorah
3
1.2k
Terraform にコントリビュートしていたら Azure のコストをやらかした話 / How I Messed Up Azure Costs While Contributing to Terraform
nnstt1
1
570
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
10
1.6k
kernelvm-brain-net
raspython3
0
660
猫でもわかるS3 Tables【Apache Iceberg編】
kentapapa
2
260
正解のない未知(インボイス制度対応)をフルサイクル開発で乗り越える方法 / How to overcome the unknown invoice system with full cycle development
carta_engineering
0
160
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Building Adaptive Systems
keathley
41
2.5k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Unsuck your backbone
ammeep
671
58k
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
850
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
800
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.7k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Scaling GitHub
holman
459
140k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.