Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
200
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
320
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.5k
UseCase of Entity Linking
izuna385
0
510
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
630
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
760
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
970
Entity representation with relational attention
izuna385
0
74
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
510
Other Decks in Technology
See All in Technology
Nihonbashi Test Talk #3_WebDriver BiDiと最新の実装状況 / WebDriver BiDi latest status
takeyaqa
1
150
Password-less Journey - パスキーへの移行を見据えたユーザーの準備 @ AXIES 2024
ritou
2
760
Autonomous Database サービス・アップデート (FY25)
oracle4engineer
PRO
0
270
コーポレートデータマスター構築への道
kworkdev
PRO
0
130
2000年てづくりキーボードの旅
tagomoris
1
170
農業用ダム監視を目的とした衛星SAR 干渉解析の適用性について
osgeojp
0
190
ドメインロジックで考えるテスタビリティ
leveragestech
1
280
属人化したE2E自動テストを ひも解く
honamin09
1
110
大規模サーバ移行を成功に導くための事前調査フェーズの工夫事例
fukuchiiinu
2
110
2024 眼科AIコンテスト手法解説スライド 第5回日本眼科AI学会総会
minamikoyasuganka
0
120
Classmethod_regrowth_2024_tokyo_security_identity_governance_summary
hiashisan
0
610
A/Aテストにおけるサンプルサイズ/japanr2024
nikkei_engineer_recruiting
1
610
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Thoughts on Productivity
jonyablonski
67
4.3k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
780
Being A Developer After 40
akosma
87
590k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
A designer walks into a library…
pauljervisheath
204
24k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Adopting Sorbet at Scale
ufuk
73
9.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.