Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
230
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
370
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
570
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
860
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
130
怖くない!はじめてのClaude Code
shinya337
0
400
整頓のジレンマとの戦い〜Tidy First?で振り返る事業とキャリアの歩み〜/Fighting the tidiness dilemma〜Business and Career Milestones Reflected on in Tidy First?〜
bitkey
2
16k
MobileActOsaka_250704.pdf
akaitadaaki
0
130
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
2
9.4k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
50
20k
fukabori.fm 出張版: 売上高617億円と高稼働率を陰で支えた社内ツール開発のあれこれ話 / 20250704 Yoshimasa Iwase & Tomoo Morikawa
shift_evolve
PRO
2
7.8k
What’s new in Android development tools
yanzm
0
320
ビギナーであり続ける/beginning
ikuodanaka
3
760
OSSのSNSツール「Misskey」をさわってみよう(右下ワイプで私のOSCの20年を振り返ります) / 20250705-osc2025-do
akkiesoft
0
170
開発生産性を測る前にやるべきこと - 組織改善の実践 / Before Measuring Dev Productivity
kaonavi
10
4.7k
マネジメントって難しい、けどおもしろい / Management is tough, but fun! #em_findy
ar_tama
7
1.1k
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Why Our Code Smells
bkeepers
PRO
336
57k
Designing for Performance
lara
610
69k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
740
Building an army of robots
kneath
306
45k
Producing Creativity
orderedlist
PRO
346
40k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.