Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
210
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
330
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
530
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
640
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
800
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1k
Entity representation with relational attention
izuna385
0
75
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
530
Other Decks in Technology
See All in Technology
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
2k
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
100
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
610
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
540
開発スピードは上がっている…品質はどうする? スピードと品質を両立させるためのプロダクト開発の進め方とは #DevSumi #DevSumiB / Agile And Quality
nihonbuson
2
3k
ビジネスモデリング道場 目的と背景
masuda220
PRO
9
530
全文検索+セマンティックランカー+LLMの自然文検索サ−ビスで得られた知見
segavvy
2
110
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
2
1.5k
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
680
飲食店予約台帳を支えるインタラクティブ UI 設計と実装
siropaca
7
1.8k
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
1.1k
Featured
See All Featured
Fireside Chat
paigeccino
34
3.2k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
What's in a price? How to price your products and services
michaelherold
244
12k
Designing for Performance
lara
604
68k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Building Your Own Lightsaber
phodgson
104
6.2k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.