Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
230
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
370
Firebase-React-App
izuna385
0
240
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
570
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
860
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
本当に使える?AutoUpgrade の新機能を実践検証してみた
oracle4engineer
PRO
1
120
Agentic Workflowという選択肢を考える
tkikuchi1002
1
360
Workflows から Agents へ ~ 生成 AI アプリの成長過程とアプローチ~
belongadmin
3
170
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全 / 20250625-aws-summit-aws-policy
opelab
6
690
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
780
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
2
1.6k
AIエージェントの継続的改善のためオブザーバビリティ
pharma_x_tech
6
1.4k
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
150
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
220
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
370
活きてなかったデータを活かしてみた話 / Shirokane Kougyou vol 19
sansan_randd
1
410
Azure AI Foundryでマルチエージェントワークフロー
seosoft
0
140
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Building a Modern Day E-commerce SEO Strategy
aleyda
41
7.3k
Bash Introduction
62gerente
614
210k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Adopting Sorbet at Scale
ufuk
77
9.4k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
RailsConf 2023
tenderlove
30
1.1k
Designing for humans not robots
tammielis
253
25k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.