Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
430
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
610
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
680
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
92
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
Snowflake Industry Days 2025 Nowcast
takumimukaiyama
0
150
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.6k
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.7k
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
140
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
430
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
340
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.3k
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
5
12k
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
0
350
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
280
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
19
3.4k
Featured
See All Featured
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
Bash Introduction
62gerente
615
210k
Believing is Seeing
oripsolob
0
18
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
99
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
97
Between Models and Reality
mayunak
0
150
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Building AI with AI
inesmontani
PRO
1
600
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
37
We Are The Robots
honzajavorek
0
130
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
210
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.