Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
440
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
610
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
690
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.2k
Entity representation with relational attention
izuna385
0
95
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
(金融庁共催)第4回金融データ活用チャレンジ勉強会資料
takumimukaiyama
0
120
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
130
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
210
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
170
toCプロダクトにおけるAI機能開発のしくじりと学び / ai-product-failures-and-learnings
rince
6
5.5k
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
160
Databricks Free Edition講座 データサイエンス編
taka_aki
0
290
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
130
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.4k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
370
How to train your dragon (web standard)
notwaldorf
97
6.5k
Automating Front-end Workflow
addyosmani
1371
200k
Building Applications with DynamoDB
mza
96
6.9k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.