Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
400
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
880
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
86
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
0
140
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
From Prompt to Product @ How to Web 2025, Bucharest, Romania
janwerner
0
120
SwiftUIのGeometryReaderとScrollViewを基礎から応用まで学び直す:設計と活用事例
fumiyasac0921
0
140
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
110
about #74462 go/token#FileSet
tomtwinkle
1
350
Azure Well-Architected Framework入門
tomokusaba
1
310
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
3
310
KMP の Swift export
kokihirokawa
0
330
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
5.4k
GA technologiesでのAI-Readyの取り組み@DataOps Night
yuto16
0
270
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
270
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
It's Worth the Effort
3n
187
28k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
How to train your dragon (web standard)
notwaldorf
96
6.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
890
Mobile First: as difficult as doing things right
swwweet
224
10k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.