Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
230
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
380
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
580
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
870
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
ZOZOTOWNフロントエンドにおけるディレクトリの分割戦略
zozotech
PRO
16
5.3k
GitHub Copilot coding agent を推したい / AIDD Nagoya #1
tnir
2
4.5k
ECS モニタリング手法大整理
yendoooo
1
120
Claude Code x Androidアプリ 開発
kgmyshin
1
570
[CV勉強会@関東 CVPR2025 読み会] MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos (Li+, CVPR2025)
abemii
0
190
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
4
1.7k
人と組織に偏重したEMへのアンチテーゼ──なぜ、EMに設計力が必要なのか/An antithesis to the overemphasis of people and organizations in EM
dskst
5
610
現場が抱える様々な問題は “組織設計上” の問題によって生じていることがある / Team-oriented Organization Design 20250827
mtx2s
3
840
サービスロボット最前線:ugoが挑むPhysical AI活用
kmatsuiugo
0
190
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
2
1.1k
AIエージェント就活入門 - MCPが履歴書になる未来
eltociear
0
480
JOAI発表資料 @ 関東kaggler会
joai_committee
1
270
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Documentation Writing (for coders)
carmenintech
73
5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Gamification - CAS2011
davidbonilla
81
5.4k
Designing for Performance
lara
610
69k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Being A Developer After 40
akosma
90
590k
Into the Great Unknown - MozCon
thekraken
40
2k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.