Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
手書き数字認識とイデアハック
Search
kaityo256
PRO
March 26, 2018
Programming
0
360
手書き数字認識とイデアハック
ChainerでMNISTを学習させたモデルの気持ちを調べる
kaityo256
PRO
March 26, 2018
Tweet
Share
More Decks by kaityo256
See All by kaityo256
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
10
1.7k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
9
1.5k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
7
2.8k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
6
610
論文紹介のやり方 / How to review
kaityo256
PRO
17
87k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
16
1.7k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
620
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.4k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
4
1.4k
Other Decks in Programming
See All in Programming
bootcamp2025_バックエンド研修_WebAPIサーバ作成.pdf
geniee_inc
0
120
なぜGoのジェネリクスはこの形なのか? - Featherweight Goが明かす設計の核心
qualiarts
0
220
ALL CODE BASE ARE BELONG TO STUDY
uzulla
26
6.6k
TFLintカスタムプラグインで始める Terraformコード品質管理
bells17
2
340
スマホから Youtube Shortsを見られないようにする
lemolatoon
27
33k
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
520
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
1
350
All About Angular's New Signal Forms
manfredsteyer
PRO
0
200
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
230
CSC509 Lecture 08
javiergs
PRO
0
230
Go言語の特性を活かした公式MCP SDKの設計
hond0413
1
410
Catch Up: Go Style Guide Update
andpad
0
240
Featured
See All Featured
Designing for Performance
lara
610
69k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Invisible Side of Design
smashingmag
302
51k
Code Review Best Practice
trishagee
72
19k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Transcript
手書き数字認識とイデアハック @kaityo256
はじめに 機械学習をやってみて、なんか収束はしているっぽい のに、いざ実際に使うとうまくいかないことが多い そもそも学習がどう行われて、モデルがどう入力を解釈 しているのかがいまいちわからない MNIST(手書き数字データ)を使って「学習済みモデルの 気持ち」を探ってみよう
MNIST: 手書き数字学習用データセット イメージ: 28×28ピクセル 0から1までのfloat(単精度実数) ラベル: 0から9 (整数)
学習 784 0 1 8 9 10 学習用データ: 6万 テスト用データ:1万
バッチサイズ:1000 エポック: 20 三層全結合 (768, 768, 10) 学習方法: Adam 活性化関数:LeRU
学習済みモデルに手書き数字を食わせる https://kaityo256.github.io/mnist_check/ この例では認識されたが・・・
学習済みモデルに手書き数字を食わせる ・・・かなり認識率が低い この入力は認識失敗
仮説: モデルは学習により「数字のイデア」を構築し、実質 的に入力とイデアとの重なりを調べているのでは? モデル 4 なんで認識率が低いんだろう? 数字のイデア 入力 一番「重なり」が 大きいイデアを探す
少し修正 0 1 8 9 モデルの「イデア」を調べる たとえば「1」の出力が大きくなるように入力を調整していく ランダム入力 もし「目的の重みが大きくなったら修正を採用 そうでなければ不採用
フィードバックループ ※ 最初は真面目にアニーリングしようと思ったが、適当に最急勾配でやっても大丈夫っぽかったのでそうした
「5」のイデア 5のイデア:この学習済みモデルが「もっとも『5』っぽい」と思う入力イメージ
0 1 2 3 4 5 6 7 8 9
得られた イデア達
イデアハック 我々は「モデルのイデア」を知っているので、逆にどういう イメージを与えればモデルが「4」と認識するかわかる
イデアハック 4のイデア 「イデア」をカンニングして入力 4と認識された
イデアハック 9のイデア 「イデア」をカンニングして入力 0っぽい入力を9と認識させることもできる
まとめ 手書き数字を学習させたモデルの「理想の数字 (イデア)」を調べた 敵対的サンプル(Adversarial examples)の一種といえなくもない・・・? イデアを見ることで、「人間には別の数字に見え る形を別の数字に誤認識させた 参考URL https://kaityo256.github.io/mnist_check/ オンラインテスト
https://github.com/kaityo256/mnist_check リポジトリ ChainerでMNISTを学習させた結果を使ってブラウザで手描き数字認識 https://qiita.com/kaityo256/items/8c7c9a32bd4ae5c0b500 Qiitaの記事 MNISTを学習させたモデルの気持ちを調べる https://qiita.com/kaityo256/items/438ee87a0ef1346071b9