Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
手書き数字認識とイデアハック
Search
kaityo256
PRO
March 26, 2018
Programming
0
360
手書き数字認識とイデアハック
ChainerでMNISTを学習させたモデルの気持ちを調べる
kaityo256
PRO
March 26, 2018
Tweet
Share
More Decks by kaityo256
See All by kaityo256
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
10k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
13
6.8k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.7k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
11
3.9k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
730
論文紹介のやり方 / How to review
kaityo256
PRO
18
89k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
1.9k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
690
Other Decks in Programming
See All in Programming
Patterns of Patterns
denyspoltorak
0
420
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
940
Implementation Patterns
denyspoltorak
0
140
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.3k
Go コードベースの構成と AI コンテキスト定義
andpad
0
150
SQL Server 2025 LT
odashinsuke
0
120
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
0
1.4k
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
760
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
160
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
340
Featured
See All Featured
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
140
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
The Limits of Empathy - UXLibs8
cassininazir
1
200
Side Projects
sachag
455
43k
エンジニアに許された特別な時間の終わり
watany
106
220k
The Cult of Friendly URLs
andyhume
79
6.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Navigating Weather and Climate Data
rabernat
0
65
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
270
Transcript
手書き数字認識とイデアハック @kaityo256
はじめに 機械学習をやってみて、なんか収束はしているっぽい のに、いざ実際に使うとうまくいかないことが多い そもそも学習がどう行われて、モデルがどう入力を解釈 しているのかがいまいちわからない MNIST(手書き数字データ)を使って「学習済みモデルの 気持ち」を探ってみよう
MNIST: 手書き数字学習用データセット イメージ: 28×28ピクセル 0から1までのfloat(単精度実数) ラベル: 0から9 (整数)
学習 784 0 1 8 9 10 学習用データ: 6万 テスト用データ:1万
バッチサイズ:1000 エポック: 20 三層全結合 (768, 768, 10) 学習方法: Adam 活性化関数:LeRU
学習済みモデルに手書き数字を食わせる https://kaityo256.github.io/mnist_check/ この例では認識されたが・・・
学習済みモデルに手書き数字を食わせる ・・・かなり認識率が低い この入力は認識失敗
仮説: モデルは学習により「数字のイデア」を構築し、実質 的に入力とイデアとの重なりを調べているのでは? モデル 4 なんで認識率が低いんだろう? 数字のイデア 入力 一番「重なり」が 大きいイデアを探す
少し修正 0 1 8 9 モデルの「イデア」を調べる たとえば「1」の出力が大きくなるように入力を調整していく ランダム入力 もし「目的の重みが大きくなったら修正を採用 そうでなければ不採用
フィードバックループ ※ 最初は真面目にアニーリングしようと思ったが、適当に最急勾配でやっても大丈夫っぽかったのでそうした
「5」のイデア 5のイデア:この学習済みモデルが「もっとも『5』っぽい」と思う入力イメージ
0 1 2 3 4 5 6 7 8 9
得られた イデア達
イデアハック 我々は「モデルのイデア」を知っているので、逆にどういう イメージを与えればモデルが「4」と認識するかわかる
イデアハック 4のイデア 「イデア」をカンニングして入力 4と認識された
イデアハック 9のイデア 「イデア」をカンニングして入力 0っぽい入力を9と認識させることもできる
まとめ 手書き数字を学習させたモデルの「理想の数字 (イデア)」を調べた 敵対的サンプル(Adversarial examples)の一種といえなくもない・・・? イデアを見ることで、「人間には別の数字に見え る形を別の数字に誤認識させた 参考URL https://kaityo256.github.io/mnist_check/ オンラインテスト
https://github.com/kaityo256/mnist_check リポジトリ ChainerでMNISTを学習させた結果を使ってブラウザで手描き数字認識 https://qiita.com/kaityo256/items/8c7c9a32bd4ae5c0b500 Qiitaの記事 MNISTを学習させたモデルの気持ちを調べる https://qiita.com/kaityo256/items/438ee87a0ef1346071b9