Upgrade to Pro — share decks privately, control downloads, hide ads and more …

基礎数学の公式

Avatar for Koga Kobayashi Koga Kobayashi
September 07, 2020

 基礎数学の公式

「ベイズ統計の理論と方法」勉強会の資料

Avatar for Koga Kobayashi

Koga Kobayashi

September 07, 2020
Tweet

More Decks by Koga Kobayashi

Other Decks in Research

Transcript

  1. సஔߦྻɺϕΫτϧ Ұൠʹ ߦྻ ʹ͍ͭͯɺ ͦͷసஔߦྻ ͱ͸ ߦྻͰ ͷ͜ͱͰ͋Δɻ k ×

    d A = (Aij ) AT d × k A = (Aji ) ࣍ݩϕΫτϧ Λ ߦྻͱߟ͑Δɻ͜ΕΛॎϕΫτϧͱ͍͏ɻ ·ͨɺ͜ͷͱ͖ԣϕΫτϧ ͸ ߦྻͰ͋Δɻ d v d × 1 vT 1 × d
  2. τϨʔε ߦྻ ͷτϨʔεΛ d × d A  tr(A) =

    d ∑ i=1 Aii ͱॻ͘ɻ tr(AB) = tr(BA) ͕੒Γཱͭɻ ߦྻ ʹ͍ͭͯҰൠʹ ͕ͩɺҰൠʹ d × d A, B AB ≠ BA ର֯੒෼ͷ࿨
  3. ϊϧϜ ϕΫτϧ ͷϊϧϜΛ Ͱද͢ɻ Ͱ͋Δɻ u ∥u∥ ∥u∥ = u

    ⋅ u u ⋅ v = uTv = tr(v ⋅ uT) ͕੒Γཱͭɻ͜ΕΑΓ (u ⋅ v)2 = vTuuTv = tr(uuTvvT) ͕ಘΒΕΔɻ·ͨ u ⋅ Av = (ATu) ⋅ v = tr(AvuT) ͕੒Γཱͭɻ
  4. ߦྻࣜ ߦྻ ͷߦྻࣜΛ d × d A det(A) = ∑

    σ sgn(σ)A1σ(1) A2σ(2) ⋯Adσ(d) ͱॻ͘ɻ ͜͜Ͱ ͸ཁૉͷ਺͕ ݸͷू߹͔Βࣗ෼ࣗ਎΁ͷશ୯ࣹ ஔ׵ Λද͢ɻ ஔ׵ͷݸ਺͸શ෦Ͱ ݸͰ͋Δ͕ɺ ͸ஔ׵શମͷू߹ʹର͢Δ࿨Ͱ͋Γɺ σ d d! ∑ σ ྫ ͸حஔ׵ͷͱ͖ ɺۮஔ׵ͷͱ͖ Ͱ͋Δɻ sgn(σ) −1 1 IUUQTPHVFNPODPNTUVEZMJOFBSBMHFCSBEFUXIBU
  5. ਖ਼ଇɾٯߦྻɾରশߦྻɾ௚ߦߦྻ ߦྻ ͕Մٯ͋Δ͍͸ਖ਼ଇͰ͋Δͱ͸ ͕୯ҐߦྻͱͳΔΑ͏ͳߦྻ ͕ଘࡏ͢Δ͜ͱͰ͋Δɻ d × d A A−1A

    A−1 ͕ՄٯͰ͋Δͱ͖ Λ ͷٯߦྻͱ͍͏ɻ A A−1 A ࣮਺Λཁૉʹ࣋ͭ ߦྻ ͕ରশߦྻͰ͋Δͱ͸ɺ ͕੒Γཱͭ͜ͱͰ͋Δɻ d × d A = (Aij ) A = AT ࣮਺Λཁૉʹ࣋ͭ ߦྻ ͕௚ߦߦྻͰ͋Δͱ͸ɺ ͕୯ҐߦྻͰ͋Δ͜ͱͰ͋Δɻ d × d R = (Rij ) RTR
  6. ର֯ߦྻɾର֯Խ ߦྻ ͕ର֯ߦྻͰ͋Δͱ͸ ͕੒Γཱͭ͜ͱͰ͋Δɻ d × d A i ≠

    j ⇒ Aij = 0 ೚ҙͷରশߦྻ ʹରͯ͠ Λର֯ߦྻʹ͢ΔΑ͏ͳ௚ߦߦྻ ͕ଘࡏ͢Δɻ ͢ͳΘͪ A R−1AR R ͱग़དྷΔɻ͜ͷͱ͖ର֯ߦྻ ΛٻΊΔ͜ͱΛʮ Λର֯Խ͢Δʯͱ͍͏ɻ R−1AR A
  7. ݻ༗஋ɾਖ਼ఆ஋ߦྻ ߦྻ ʹ͍ͭͯɺෳૉ਺ ͱෳૉ਺Λཁૉͱ͢ΔϕΫτϧ ͕ ଘࡏͯ͠ d × d A

    λ v ≠ 0 ͕੒Γཱͭͱ͖ɺ Λ ͷݻ༗஋ͱ͍͍ɺ Λ ͷݻ༗ϕΫτϧͱ͍͏ɻ ରশߦྻ ͷݻ༗஋͕શͯ ΑΓେ͖͍ͱ͖ɺ Λਖ਼ఆ஋ߦྻͰ͋Δͱ͍͏ɻ λ A v A A 0 A Av = λv ͕ਖ਼ఆ஋ߦྻͰ͋Ε͹ೋ࣍ࣜʹ͍ͭͯฏํ׬੒͕ग़དྷΔɻ A 1 2 (u ⋅ Au) − u ⋅ v = 1 2 ∥A1/2(u − A−1v)∥2 − 1 2 ∥A−1/2v∥2
  8. ਖ਼ن෼෍ ͱ͠ɺ Λ ͷਖ਼ఆ஋ߦྻͰ͋Δͱ͢Δɻ͜ͷͱ͖ w ∈ ℝd A d ×

    d ∫ exp(− n 2 w ⋅ A−1w)dw = (2π)d/2 det(A)1/2 nd/2 ฏۉ͕ Ͱ෼ࢄڞ෼ࢄߦྻ͕ ͷਖ਼ن෼෍͸ a ∈ ℝd A (a, A) = p(w) = 1 (2π)d/2 det(A)1/2 exp(− 1 2 (w − a) ⋅ A−1(w − a)) ͱ͍͏ࣜͰද͞ΕΔɻ
  9. ਖ਼ن෼෍ ͜ͷͱ͖ ∫ wp(w)dw = a Ͱ͋Γɺ೚ҙͷ ߦྻ ʹ͍ͭͯ d

    × d B ∫ (w − a) ⋅ B(w − a)p(w)dw = tr(BA) ͷ֬཰෼෍͸ Ͱ͋Δɻ (Ba + b, BABT) Ͱ͋Δɻ Λ ͷՄٯߦྻͱ͢Δɻ ֬཰ม਺ ͷ֬཰෼෍͕ Ͱ͋Δͱ͖֬཰ม਺ B d × d X (a, A) Y = BX + b
  10. ଟม਺͔ΒͳΔؔ਺ͷඍ෼ͷه๏ Λඇෛͷ੔਺ͱ͢Δɻଟॏࢦ਺ ʹ͍ͭͯ࣍ͷΑ͏ʹఆΊΔɻ k1 , …, kd k = (k1

    , …, kd ) |k| = k1 + k2 + ⋯ + kd , k! = (k1 )!(k2 )!⋯(kd )! ͷ ΛؚΉ։ू߹্Ͱఆٛ͞Εͨ ճ࿈ଓඍ෼Մೳͳؔ਺ ʹ͍ͭͯ ͷͱ͖ ℝd w = w0 (r + 1) g(w) |k| ≤ r + 1 ∂kg ∂wk (w) = ( d ∏ j=1 ∂kj ∂wkj j )g(w), ͱఆٛ͢Δɻ ͜ΕΒ͸ଟม਺ͷؔ਺ͷඍ෼ʹ͓͍ͯҰൠతʹར༻͞ΕΔه๏Ͱ͋Δɻ (w − w0 )k = d ∏ j=1 (wj − (w0 )j )kj
  11. ฏۉ஋ͷఆཧ ೚ҙͷ ʹରͯ͠ɺ ʹΑΔఆ·Δ ͕ଘࡏͯ͠ w w w* g(w) =

    ∑ |k|≤r ∂kg ∂wk (w0 ) (w − w0 )k k! + ∑ |k|=r+1 ∂kg ∂wk (w*) (w − w0 )k k! ͕੒ཱ͢Δɻ ͜Ε͕ฏۉ஋ͷఆཧͰ͋Γɺؔ਺ͷมԽͷฏۉతͳڍಈʹ͍ͭͯͷఆཧͰ͋Δɻ ·ͨ͜͜Ͱ ͸͋Δ ͕ଘࡏͯ͠ w* 0 < θ < 1 w* = w0 + θ(w − w0 ) ͱද͞ΕΔɻ ಛʹ Ͱ͋Δ͔Βɺ ͷͱ͖ ͕੒Γཱͭɻ ∥w* − w0 ∥ ≤ ∥w − w0 ∥ w → w0 w* → w0