Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fundamentals of Music Processing (Chapter 5)
Search
Koga Kobayashi
December 12, 2019
Research
0
67
Fundamentals of Music Processing (Chapter 5)
Koga Kobayashi
December 12, 2019
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.3k
基礎数学の公式
kajyuuen
1
120
初等確率論の基礎
kajyuuen
1
160
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
860
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.4k
SecHack365 北海道会 LT
kajyuuen
0
480
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.2k
Other Decks in Research
See All in Research
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
o1 pro mode の調査レポート
smorce
0
140
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
340
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
170
Collaborative Development of Foundation Models at Japanese Academia
odashi
0
220
複数データセットを用いた動作認識
yuyay
0
140
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
490
NLP2025SharedTask翻訳部門
moriokataku
0
240
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
250
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
150
SATソルバを用いた複数パス間の制約を満足する経路計算手法 / A Path Calculation Method Satisfying Constraints between Multiple Paths Using SAT Solver
nttcom
0
110
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
140
Featured
See All Featured
Building an army of robots
kneath
303
45k
YesSQL, Process and Tooling at Scale
rocio
172
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
50
2.3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
The Cult of Friendly URLs
andyhume
78
6.3k
Embracing the Ebb and Flow
colly
84
4.6k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Thoughts on Productivity
jonyablonski
69
4.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
GraphQLとの向き合い方2022年版
quramy
44
14k
Making Projects Easy
brettharned
116
6.1k
Transcript
Fundamentals of Music Processing Chapter 5: Chord Recognition খྛ
ᕣՏ εϥΠυʹؚ·ΕΔਤFundamentals of Music ProcessingΑΓҾ༻
Chapter 5: Chord Recognition Chord(Ի) • 3ͭҎ্ͷҟͳΔԻූ͔Βߏ͞ΕΔԻͷ͜ͱ Harmony() • ෳͷԻ͔ΒͳΔܥྻɺԻਐߦ
FM7 G7 Em7 Am Harmony
Chapter 5: Chord Recognition Chord Recognition(Իೝࣝ) • Ի͔ΒԻਐߦΛೝࣝ͢Δٕज़ ԻָϑΝΠϧ͔ΒίʔυේΛࣗಈͰ࡞ग़དྷΔ Իೝ͕ࣝ͏·͍͘͘ͱ…
Chapter 5.3: HMM-Based Chord Recognition Chapter 5.1~5.2 • ಛྔ͔ΒԻΛ͋Δఔਪఆग़དྷΔ ͔͠͠ɺ͜ΕԻҰͭҰ͔ͭ͠ݟ͍ͯͳ͍
Α͘ग़ΔԻܨ͕Γͷڧ͍Իʹண͍ͨ͠ ྫ: I–IV–V–Iਐߦ • FGසग़͠ɺ͍͖ͳΓFmʹߦ͘͜ͱ΄΅ແ͍ HMM(ӅΕϚϧίϑϞσϧ)Λར༻ͯ͠ԻਪఆΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition Ի: , ঢ়ଶ: (for )
ͱͨ͠ͱ͖ɺϚϧίϑੑΛԾఆ͢Δͱ Ͱ͋Δ֬ A := {α1 , α2 , ⋯, αI } s i ∈ [1 : I] sn+1 = αj P[sn+1 = αj |sn = αi , sn−1 = αk , ⋯] = P[sn+1 = αj |P[sn+1 = αj |sn ] ͜͜Ͱ ΛҎԼͷΑ͏ʹఆٛ͢Δɻ(for ) aij i, j ∈ [1 : I] ͜Εঢ়ଶ͕ ͔Β ʹભҠ͢Δ֬ͱߟ͑Δ͜ͱ͕ग़དྷΔ αi αj aij := P[sn+1 = αj |sn = αi ] ∈ [0,1] ·ͣɺϚϧίϑ࿈Λར༻ͨ͠Ի༧ଌʹ͍ͭͯઆ໌͢Δ
Chapter 5.3: HMM-Based Chord Recognition ۩ମྫ; , ͷͱ͖ I =
3 A := {α1 = C, α2 = G, α3 = F} ·ͨ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͢Δ αi ci := P[s1 = αi ] ∈ [0,1]
Chapter 5.3: HMM-Based Chord Recognition , , ͷͱ͖ ঢ়ଶܥྻ: ʹ͍ͭͯߟ͑Δ
I = 3 A := {α1 = C, α2 = G, α3 = F} C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T S = (C, C, C, G, G, F, F, C, C) ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͠ɺ αi ci := P[s1 = αi ] ∈ [0,1] ۩ମྫ
Chapter 5.3: HMM-Based Chord Recognition ભҠ͕֬ҎԼͷͱ͖ ͷΑ͏ͳԻਐߦ͕ى͖Δ֬ S S =
(C, C, C, G, G, F, F, C, C) = c1 ⋅ a11 ⋅ a11 ⋅ a12 ⋅ a22 ⋅ a23 ⋅ a33 ⋅ a31 ⋅ a11 ≈ 1.29 ⋅ 10−4
Chapter 5.3: HMM-Based Chord Recognition ઌఔঢ়ଶܥྻ Λ༻͍ͯɺԻਐߦͷ֬Λܭࢉ͕ͨ͠ ࣮ੈքͰऔΓ͏Δͯ͢ͷ ʹ͍ͭͯܭࢉෆՄೳ S
S ྫ: 10छྨͷԻɺ20͔ͭΒߏ͞ΕΔۂͷ߹ ύλʔϯͷ֬Λܭࢉ͢Δඞཁ͕͋Δ 1020 ͦ͜Ͱ෦ͷঢ়ଶͰͳ͘ɺಛϕΫτϧΛ༻͍ͯ ԻਐߦΛٻΊΔํ๏ͱͯ͠HMMΛར༻͢Δɻ
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Input: Իσʔλ͔Β؍ଌͨ͠ܥྻ ͔Β ϞσϧΛར༻͠ɺ؍ଌܥྻ Λ࡞ɻ
O = (o1 , ⋯, oN ) B = (β1 , ⋯, βN ) ؍ଌܥྻ ؍ଌγϯϘϧ ͔Βߏ͞ΕΔ B = (β1 , ⋯, βN ) ℬ = {β1 , ⋯, βk } (for k ∈ [1 : K])
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Viterbi: ؍ଌܥྻ ͱ ॳظঢ়ଶͷ֬
ੜ֬ͱભҠ͔֬Β༗άϥϑΛ࡞ B = (β1 , ⋯, βN ) C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T ੜ֬ ભҠ֬
Chapter 5.3: HMM-Based Chord Recognition ੜ֬ ભҠ֬ ॳظঢ়ଶͷ֬ ੜ͞Εͨ༗άϥϑ
Chapter 5.3: HMM-Based Chord Recognition ViterbiΞϧΰϦζϜʹΑͬͯ ࠷Β͍͠ܦ࿏ʹ͍ͭͯܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ࠷ޙʹɺͦͷϙΠϯλΛḷΓ࠷Β͍͠ԻਐߦΛ ٻΊΔ A := {α1
= C, α2 = G, α3 = F} ͷͱ͖ ̂ S = (C, C, C, G, G, F)