Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fundamentals of Music Processing (Chapter 5)
Search
Koga Kobayashi
December 12, 2019
Research
0
78
Fundamentals of Music Processing (Chapter 5)
Koga Kobayashi
December 12, 2019
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.5k
基礎数学の公式
kajyuuen
1
140
初等確率論の基礎
kajyuuen
1
170
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
880
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.4k
SecHack365 北海道会 LT
kajyuuen
0
500
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.3k
Other Decks in Research
See All in Research
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
930
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
280
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
870
数理最適化と機械学習の融合
mickey_kubo
15
8.7k
20250502_ABEJA_論文読み会_スライド
flatton
0
160
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
1
200
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
370
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.5k
業界横断 副業・兼業者の実態調査
fkske
0
120
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
170
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
590
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Six Lessons from altMBA
skipperchong
28
3.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
Producing Creativity
orderedlist
PRO
346
40k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
It's Worth the Effort
3n
184
28k
For a Future-Friendly Web
brad_frost
179
9.8k
Thoughts on Productivity
jonyablonski
69
4.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.7k
Transcript
Fundamentals of Music Processing Chapter 5: Chord Recognition খྛ
ᕣՏ εϥΠυʹؚ·ΕΔਤFundamentals of Music ProcessingΑΓҾ༻
Chapter 5: Chord Recognition Chord(Ի) • 3ͭҎ্ͷҟͳΔԻූ͔Βߏ͞ΕΔԻͷ͜ͱ Harmony() • ෳͷԻ͔ΒͳΔܥྻɺԻਐߦ
FM7 G7 Em7 Am Harmony
Chapter 5: Chord Recognition Chord Recognition(Իೝࣝ) • Ի͔ΒԻਐߦΛೝࣝ͢Δٕज़ ԻָϑΝΠϧ͔ΒίʔυේΛࣗಈͰ࡞ग़དྷΔ Իೝ͕ࣝ͏·͍͘͘ͱ…
Chapter 5.3: HMM-Based Chord Recognition Chapter 5.1~5.2 • ಛྔ͔ΒԻΛ͋Δఔਪఆग़དྷΔ ͔͠͠ɺ͜ΕԻҰͭҰ͔ͭ͠ݟ͍ͯͳ͍
Α͘ग़ΔԻܨ͕Γͷڧ͍Իʹண͍ͨ͠ ྫ: I–IV–V–Iਐߦ • FGසग़͠ɺ͍͖ͳΓFmʹߦ͘͜ͱ΄΅ແ͍ HMM(ӅΕϚϧίϑϞσϧ)Λར༻ͯ͠ԻਪఆΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition Ի: , ঢ়ଶ: (for )
ͱͨ͠ͱ͖ɺϚϧίϑੑΛԾఆ͢Δͱ Ͱ͋Δ֬ A := {α1 , α2 , ⋯, αI } s i ∈ [1 : I] sn+1 = αj P[sn+1 = αj |sn = αi , sn−1 = αk , ⋯] = P[sn+1 = αj |P[sn+1 = αj |sn ] ͜͜Ͱ ΛҎԼͷΑ͏ʹఆٛ͢Δɻ(for ) aij i, j ∈ [1 : I] ͜Εঢ়ଶ͕ ͔Β ʹભҠ͢Δ֬ͱߟ͑Δ͜ͱ͕ग़དྷΔ αi αj aij := P[sn+1 = αj |sn = αi ] ∈ [0,1] ·ͣɺϚϧίϑ࿈Λར༻ͨ͠Ի༧ଌʹ͍ͭͯઆ໌͢Δ
Chapter 5.3: HMM-Based Chord Recognition ۩ମྫ; , ͷͱ͖ I =
3 A := {α1 = C, α2 = G, α3 = F} ·ͨ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͢Δ αi ci := P[s1 = αi ] ∈ [0,1]
Chapter 5.3: HMM-Based Chord Recognition , , ͷͱ͖ ঢ়ଶܥྻ: ʹ͍ͭͯߟ͑Δ
I = 3 A := {α1 = C, α2 = G, α3 = F} C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T S = (C, C, C, G, G, F, F, C, C) ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͠ɺ αi ci := P[s1 = αi ] ∈ [0,1] ۩ମྫ
Chapter 5.3: HMM-Based Chord Recognition ભҠ͕֬ҎԼͷͱ͖ ͷΑ͏ͳԻਐߦ͕ى͖Δ֬ S S =
(C, C, C, G, G, F, F, C, C) = c1 ⋅ a11 ⋅ a11 ⋅ a12 ⋅ a22 ⋅ a23 ⋅ a33 ⋅ a31 ⋅ a11 ≈ 1.29 ⋅ 10−4
Chapter 5.3: HMM-Based Chord Recognition ઌఔঢ়ଶܥྻ Λ༻͍ͯɺԻਐߦͷ֬Λܭࢉ͕ͨ͠ ࣮ੈքͰऔΓ͏Δͯ͢ͷ ʹ͍ͭͯܭࢉෆՄೳ S
S ྫ: 10छྨͷԻɺ20͔ͭΒߏ͞ΕΔۂͷ߹ ύλʔϯͷ֬Λܭࢉ͢Δඞཁ͕͋Δ 1020 ͦ͜Ͱ෦ͷঢ়ଶͰͳ͘ɺಛϕΫτϧΛ༻͍ͯ ԻਐߦΛٻΊΔํ๏ͱͯ͠HMMΛར༻͢Δɻ
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Input: Իσʔλ͔Β؍ଌͨ͠ܥྻ ͔Β ϞσϧΛར༻͠ɺ؍ଌܥྻ Λ࡞ɻ
O = (o1 , ⋯, oN ) B = (β1 , ⋯, βN ) ؍ଌܥྻ ؍ଌγϯϘϧ ͔Βߏ͞ΕΔ B = (β1 , ⋯, βN ) ℬ = {β1 , ⋯, βk } (for k ∈ [1 : K])
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Viterbi: ؍ଌܥྻ ͱ ॳظঢ়ଶͷ֬
ੜ֬ͱભҠ͔֬Β༗άϥϑΛ࡞ B = (β1 , ⋯, βN ) C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T ੜ֬ ભҠ֬
Chapter 5.3: HMM-Based Chord Recognition ੜ֬ ભҠ֬ ॳظঢ়ଶͷ֬ ੜ͞Εͨ༗άϥϑ
Chapter 5.3: HMM-Based Chord Recognition ViterbiΞϧΰϦζϜʹΑͬͯ ࠷Β͍͠ܦ࿏ʹ͍ͭͯܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ࠷ޙʹɺͦͷϙΠϯλΛḷΓ࠷Β͍͠ԻਐߦΛ ٻΊΔ A := {α1
= C, α2 = G, α3 = F} ͷͱ͖ ̂ S = (C, C, C, G, G, F)