Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fundamentals of Music Processing (Chapter 5)
Search
Koga Kobayashi
December 12, 2019
Research
0
53
Fundamentals of Music Processing (Chapter 5)
Koga Kobayashi
December 12, 2019
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
基礎数学の公式
kajyuuen
1
110
初等確率論の基礎
kajyuuen
1
150
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
800
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.3k
SecHack365 北海道会 LT
kajyuuen
0
450
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.2k
Other Decks in Research
See All in Research
ダイナミックプライシング とその実例
skmr2348
3
400
129 2 th
0325
0
240
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
350
3次元点群の分類における評価指標について
kentaitakura
0
410
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
350
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
110
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
450
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
120
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
260
TransformerによるBEV Perception
hf149
1
430
外積やロドリゲスの回転公式を利用した点群の回転
kentaitakura
1
650
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
190
Featured
See All Featured
It's Worth the Effort
3n
183
27k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Building Your Own Lightsaber
phodgson
103
6.1k
How GitHub (no longer) Works
holman
310
140k
Building an army of robots
kneath
302
43k
GraphQLとの向き合い方2022年版
quramy
43
13k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Transcript
Fundamentals of Music Processing Chapter 5: Chord Recognition খྛ
ᕣՏ εϥΠυʹؚ·ΕΔਤFundamentals of Music ProcessingΑΓҾ༻
Chapter 5: Chord Recognition Chord(Ի) • 3ͭҎ্ͷҟͳΔԻූ͔Βߏ͞ΕΔԻͷ͜ͱ Harmony() • ෳͷԻ͔ΒͳΔܥྻɺԻਐߦ
FM7 G7 Em7 Am Harmony
Chapter 5: Chord Recognition Chord Recognition(Իೝࣝ) • Ի͔ΒԻਐߦΛೝࣝ͢Δٕज़ ԻָϑΝΠϧ͔ΒίʔυේΛࣗಈͰ࡞ग़དྷΔ Իೝ͕ࣝ͏·͍͘͘ͱ…
Chapter 5.3: HMM-Based Chord Recognition Chapter 5.1~5.2 • ಛྔ͔ΒԻΛ͋Δఔਪఆग़དྷΔ ͔͠͠ɺ͜ΕԻҰͭҰ͔ͭ͠ݟ͍ͯͳ͍
Α͘ग़ΔԻܨ͕Γͷڧ͍Իʹண͍ͨ͠ ྫ: I–IV–V–Iਐߦ • FGසग़͠ɺ͍͖ͳΓFmʹߦ͘͜ͱ΄΅ແ͍ HMM(ӅΕϚϧίϑϞσϧ)Λར༻ͯ͠ԻਪఆΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition Ի: , ঢ়ଶ: (for )
ͱͨ͠ͱ͖ɺϚϧίϑੑΛԾఆ͢Δͱ Ͱ͋Δ֬ A := {α1 , α2 , ⋯, αI } s i ∈ [1 : I] sn+1 = αj P[sn+1 = αj |sn = αi , sn−1 = αk , ⋯] = P[sn+1 = αj |P[sn+1 = αj |sn ] ͜͜Ͱ ΛҎԼͷΑ͏ʹఆٛ͢Δɻ(for ) aij i, j ∈ [1 : I] ͜Εঢ়ଶ͕ ͔Β ʹભҠ͢Δ֬ͱߟ͑Δ͜ͱ͕ग़དྷΔ αi αj aij := P[sn+1 = αj |sn = αi ] ∈ [0,1] ·ͣɺϚϧίϑ࿈Λར༻ͨ͠Ի༧ଌʹ͍ͭͯઆ໌͢Δ
Chapter 5.3: HMM-Based Chord Recognition ۩ମྫ; , ͷͱ͖ I =
3 A := {α1 = C, α2 = G, α3 = F} ·ͨ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͢Δ αi ci := P[s1 = αi ] ∈ [0,1]
Chapter 5.3: HMM-Based Chord Recognition , , ͷͱ͖ ঢ়ଶܥྻ: ʹ͍ͭͯߟ͑Δ
I = 3 A := {α1 = C, α2 = G, α3 = F} C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T S = (C, C, C, G, G, F, F, C, C) ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͠ɺ αi ci := P[s1 = αi ] ∈ [0,1] ۩ମྫ
Chapter 5.3: HMM-Based Chord Recognition ભҠ͕֬ҎԼͷͱ͖ ͷΑ͏ͳԻਐߦ͕ى͖Δ֬ S S =
(C, C, C, G, G, F, F, C, C) = c1 ⋅ a11 ⋅ a11 ⋅ a12 ⋅ a22 ⋅ a23 ⋅ a33 ⋅ a31 ⋅ a11 ≈ 1.29 ⋅ 10−4
Chapter 5.3: HMM-Based Chord Recognition ઌఔঢ়ଶܥྻ Λ༻͍ͯɺԻਐߦͷ֬Λܭࢉ͕ͨ͠ ࣮ੈքͰऔΓ͏Δͯ͢ͷ ʹ͍ͭͯܭࢉෆՄೳ S
S ྫ: 10छྨͷԻɺ20͔ͭΒߏ͞ΕΔۂͷ߹ ύλʔϯͷ֬Λܭࢉ͢Δඞཁ͕͋Δ 1020 ͦ͜Ͱ෦ͷঢ়ଶͰͳ͘ɺಛϕΫτϧΛ༻͍ͯ ԻਐߦΛٻΊΔํ๏ͱͯ͠HMMΛར༻͢Δɻ
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Input: Իσʔλ͔Β؍ଌͨ͠ܥྻ ͔Β ϞσϧΛར༻͠ɺ؍ଌܥྻ Λ࡞ɻ
O = (o1 , ⋯, oN ) B = (β1 , ⋯, βN ) ؍ଌܥྻ ؍ଌγϯϘϧ ͔Βߏ͞ΕΔ B = (β1 , ⋯, βN ) ℬ = {β1 , ⋯, βk } (for k ∈ [1 : K])
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Viterbi: ؍ଌܥྻ ͱ ॳظঢ়ଶͷ֬
ੜ֬ͱભҠ͔֬Β༗άϥϑΛ࡞ B = (β1 , ⋯, βN ) C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T ੜ֬ ભҠ֬
Chapter 5.3: HMM-Based Chord Recognition ੜ֬ ભҠ֬ ॳظঢ়ଶͷ֬ ੜ͞Εͨ༗άϥϑ
Chapter 5.3: HMM-Based Chord Recognition ViterbiΞϧΰϦζϜʹΑͬͯ ࠷Β͍͠ܦ࿏ʹ͍ͭͯܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ࠷ޙʹɺͦͷϙΠϯλΛḷΓ࠷Β͍͠ԻਐߦΛ ٻΊΔ A := {α1
= C, α2 = G, α3 = F} ͷͱ͖ ̂ S = (C, C, C, G, G, F)