Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fundamentals of Music Processing (Chapter 5)
Search
Koga Kobayashi
December 12, 2019
Research
0
62
Fundamentals of Music Processing (Chapter 5)
Koga Kobayashi
December 12, 2019
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.1k
基礎数学の公式
kajyuuen
1
120
初等確率論の基礎
kajyuuen
1
160
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
850
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.4k
SecHack365 北海道会 LT
kajyuuen
0
470
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.2k
Other Decks in Research
See All in Research
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1k
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
3
120
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
410
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
550
Weekly AI Agents News!
masatoto
31
53k
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
3
130
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
380
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
Building Height Estimation Using Shadow Length in Satellite Imagery
satai
3
190
第79回 産総研人工知能セミナー 発表資料
agiats
3
210
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
210
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
520
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Building Adaptive Systems
keathley
40
2.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
BBQ
matthewcrist
87
9.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
980
KATA
mclloyd
29
14k
Side Projects
sachag
452
42k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Transcript
Fundamentals of Music Processing Chapter 5: Chord Recognition খྛ
ᕣՏ εϥΠυʹؚ·ΕΔਤFundamentals of Music ProcessingΑΓҾ༻
Chapter 5: Chord Recognition Chord(Ի) • 3ͭҎ্ͷҟͳΔԻූ͔Βߏ͞ΕΔԻͷ͜ͱ Harmony() • ෳͷԻ͔ΒͳΔܥྻɺԻਐߦ
FM7 G7 Em7 Am Harmony
Chapter 5: Chord Recognition Chord Recognition(Իೝࣝ) • Ի͔ΒԻਐߦΛೝࣝ͢Δٕज़ ԻָϑΝΠϧ͔ΒίʔυේΛࣗಈͰ࡞ग़དྷΔ Իೝ͕ࣝ͏·͍͘͘ͱ…
Chapter 5.3: HMM-Based Chord Recognition Chapter 5.1~5.2 • ಛྔ͔ΒԻΛ͋Δఔਪఆग़དྷΔ ͔͠͠ɺ͜ΕԻҰͭҰ͔ͭ͠ݟ͍ͯͳ͍
Α͘ग़ΔԻܨ͕Γͷڧ͍Իʹண͍ͨ͠ ྫ: I–IV–V–Iਐߦ • FGසग़͠ɺ͍͖ͳΓFmʹߦ͘͜ͱ΄΅ແ͍ HMM(ӅΕϚϧίϑϞσϧ)Λར༻ͯ͠ԻਪఆΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition Ի: , ঢ়ଶ: (for )
ͱͨ͠ͱ͖ɺϚϧίϑੑΛԾఆ͢Δͱ Ͱ͋Δ֬ A := {α1 , α2 , ⋯, αI } s i ∈ [1 : I] sn+1 = αj P[sn+1 = αj |sn = αi , sn−1 = αk , ⋯] = P[sn+1 = αj |P[sn+1 = αj |sn ] ͜͜Ͱ ΛҎԼͷΑ͏ʹఆٛ͢Δɻ(for ) aij i, j ∈ [1 : I] ͜Εঢ়ଶ͕ ͔Β ʹભҠ͢Δ֬ͱߟ͑Δ͜ͱ͕ग़དྷΔ αi αj aij := P[sn+1 = αj |sn = αi ] ∈ [0,1] ·ͣɺϚϧίϑ࿈Λར༻ͨ͠Ի༧ଌʹ͍ͭͯઆ໌͢Δ
Chapter 5.3: HMM-Based Chord Recognition ۩ମྫ; , ͷͱ͖ I =
3 A := {α1 = C, α2 = G, α3 = F} ·ͨ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͢Δ αi ci := P[s1 = αi ] ∈ [0,1]
Chapter 5.3: HMM-Based Chord Recognition , , ͷͱ͖ ঢ়ଶܥྻ: ʹ͍ͭͯߟ͑Δ
I = 3 A := {α1 = C, α2 = G, α3 = F} C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T S = (C, C, C, G, G, F, F, C, C) ࠷ॳͷঢ়ଶ͕ Ͱ͋Δ֬ΛҎԼͷΑ͏ʹఆٛ͠ɺ αi ci := P[s1 = αi ] ∈ [0,1] ۩ମྫ
Chapter 5.3: HMM-Based Chord Recognition ભҠ͕֬ҎԼͷͱ͖ ͷΑ͏ͳԻਐߦ͕ى͖Δ֬ S S =
(C, C, C, G, G, F, F, C, C) = c1 ⋅ a11 ⋅ a11 ⋅ a12 ⋅ a22 ⋅ a23 ⋅ a33 ⋅ a31 ⋅ a11 ≈ 1.29 ⋅ 10−4
Chapter 5.3: HMM-Based Chord Recognition ઌఔঢ়ଶܥྻ Λ༻͍ͯɺԻਐߦͷ֬Λܭࢉ͕ͨ͠ ࣮ੈքͰऔΓ͏Δͯ͢ͷ ʹ͍ͭͯܭࢉෆՄೳ S
S ྫ: 10छྨͷԻɺ20͔ͭΒߏ͞ΕΔۂͷ߹ ύλʔϯͷ֬Λܭࢉ͢Δඞཁ͕͋Δ 1020 ͦ͜Ͱ෦ͷঢ়ଶͰͳ͘ɺಛϕΫτϧΛ༻͍ͯ ԻਐߦΛٻΊΔํ๏ͱͯ͠HMMΛར༻͢Δɻ
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Input: Իσʔλ͔Β؍ଌͨ͠ܥྻ ͔Β ϞσϧΛར༻͠ɺ؍ଌܥྻ Λ࡞ɻ
O = (o1 , ⋯, oN ) B = (β1 , ⋯, βN ) ؍ଌܥྻ ؍ଌγϯϘϧ ͔Βߏ͞ΕΔ B = (β1 , ⋯, βN ) ℬ = {β1 , ⋯, βk } (for k ∈ [1 : K])
Chapter 5.3: HMM-Based Chord Recognition
Chapter 5.3: HMM-Based Chord Recognition Viterbi: ؍ଌܥྻ ͱ ॳظঢ়ଶͷ֬
ੜ֬ͱભҠ͔֬Β༗άϥϑΛ࡞ B = (β1 , ⋯, βN ) C = (c1 , c2 , c3 )T = (0.6,0.2,0.3)T ੜ֬ ભҠ֬
Chapter 5.3: HMM-Based Chord Recognition ੜ֬ ભҠ֬ ॳظঢ়ଶͷ֬ ੜ͞Εͨ༗άϥϑ
Chapter 5.3: HMM-Based Chord Recognition ViterbiΞϧΰϦζϜʹΑͬͯ ࠷Β͍͠ܦ࿏ʹ͍ͭͯܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ੜ͞Εͨ༗άϥϑ ViterbiΞϧΰϦζϜͰ֤ҐஔͰɺ ֤ԻʹͨͲΓண͘·Ͱͷ࠷దίετͱ ͦͷલʹࢸΔ·ͰͷϙΠϯλΛ֮͑ͳ͕ΒܭࢉΛߦ͏
Chapter 5.3: HMM-Based Chord Recognition ࠷ޙʹɺͦͷϙΠϯλΛḷΓ࠷Β͍͠ԻਐߦΛ ٻΊΔ A := {α1
= C, α2 = G, α3 = F} ͷͱ͖ ̂ S = (C, C, C, G, G, F)