Upgrade to Pro — share decks privately, control downloads, hide ads and more …

初等確率論の基礎

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 初等確率論の基礎

「ベイズ統計の理論と方法」勉強会の資料

Avatar for Koga Kobayashi

Koga Kobayashi

August 17, 2020
Tweet

More Decks by Koga Kobayashi

Other Decks in Research

Transcript

  1. ֬཰෼෍ ϢʔΫϦουۭؒ ͷݩ ͷؔ਺ ͕ ℝN x = (x1 ,

    …, xN ) q(x) ≥ 0 ∫ q(x)dx ≡ ∫ dx1 ∫ dx2 … ∫ dxN q(x1 , x2 , ⋯, xN ) = 1 Λຬͨ͢ͱ͖  Λ֬཰෼෍͋Δ͍͸֬཰ີ౓ؔ਺ͱ͍͏ɻ q(x) ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬཰͸ A ⊂ ℝN q(x) A Q(A) = ∫ A q(x)dx ͜ͷͱ͖ɺؔ਺ ΋֬཰෼෍ͱ͍͏ɻ Q( ⋅ )
  2. ֬཰ม਺ ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹ஋ΛऔΔม਺ Λ ʮ ʹ஋ΛऔΔ֬཰ม਺ʯͱ͍͏ɻ ℝN X ℝN ʮ

    ͱͳΔ֬཰ʯ͕ Ͱ͋Δͱ͖ ʮ֬཰ม਺ ͷ֬཰෼෍͸ Ͱ͋Δʯ͋Δ͍͸ ʮ֬཰ม਺ ͷ֬཰෼෍͸ ʹै͏ʯ͋Δ͍͸ ʮ֬཰ม਺ ͷ֬཰෼෍͸ Ͱ͋Δʯͱ͍͏ɻ X ∈ A Q(A) X q(x) X q(x) X Q
  3. ۩ମྫਅͷ෼෍ αϯϓϧ ͕͋Δ֬཰෼෍ ʹಠཱʹै͏ ֬཰ม਺ͷ࣮ݱ஋ʢ؍ଌ஋ʣͩͱ͢Δɻ A = xn = {x1

    , …, xn } ⊂ ℝN q(x) ͢ͳΘͪ Λ ্ͷ෼෍ xn (ℝN)n q(xn) = n ∏ i=1 q(xi ) = q(x1 )q(x2 )⋯q(xn ) Λ࣋ͭ֬཰ม਺ ͷ࣮ݱ஋Ͱ͋Δͱߟ͑Δɻ ͜ͷͱ͖֬཰෼෍ Λਅͷ෼෍ͱݺͿɻ Xn = (X1 , X2 , …, Xn ) q(x)
  4. ฏۉͱ෼ࢄ ʹ஋ΛͱΔ֬཰ม਺ ͷ֬཰෼෍Λ ͱ͢Δɻ ℝN X q(x) [f(X)] ≡ ∫

    f(x)q(x)dx [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T] = [f(X)f(X)T] − [f(X)][f(X)T] ͱఆٛ͢Δɻ ͕༩͑ΒΕͨͱ͖ɺ֬཰ม਺ ͷฏۉΛ f : ℝN → ℝM f(X) ·ͨ෼ࢄڞ෼ࢄΛ ͱఆٛ͢Δɻ֬཰ม਺Λ໌ه͍ͨ͠ͱ͖͸ ͱॻ͘ɻ X [f(X)]
  5. ۩ମྫαϯϓϧͷฏۉ஋ αϯϓϧ Λද֬͢཰ม਺Λ ͱ͢Δɻ ͦͷؔ਺ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉ஋ΛऔΔૢ࡞ Λ xn = {x1

    , …, xn } Xn = (X1 , X2 , …, Xn ) f(Xn) [ ⋅ ] ͱදه͢Δɻ  ͜ͷฏۉ஋ ΛʮαϯϓϧͷݱΕํʹର͢Δฏۉ஋ʯͱݺͿɻ [ ⋅ ] [f(XN)] = ∫ ∫ ⋯ ∫ f(x1 , …, xn ) n ∏ i=1 q(xi )dxi
  6. X X−1 ֬཰ۭؒ(Ω = ℝM, ℬ, p) w ∈ Ω

    ٯ૾X−1(A) ֬཰ີ౓ؔ਺ ֬཰෼෍ q(x) = p(X−1(x)) Մଌۭؒ(Ω′ = ℝN, ℬ′ ) A ∈ ℬ′ X(w) = X x ∈ Ω′ ֬཰෼෍Q(A) = ∫ A q(x)dx f(x) ฏۉ[f(X)] ≡ ∫ f(x)q(x)dx = ∫ f(x)p(X−1(x))dx = ∫ p(w)X(w)dw = ∫ pXdw ֬཰ม਺ ֬཰ม਺ͱ֬཰෼෍ɺฏۉͷؔ܎ ֬཰ۭؒ(Ω′ = ℝN, ℬ′ , q)
  7. ಉ࣌෼෍ͱ৚݅෇͖෼෍ ͭͷ֬཰ม਺ ͱ ͕͋Δͱ͖ɺͦͷ૊ ͷ֬཰෼෍͕ Ͱ͋Δͱ͖ɺ Λಉ࣌֬཰෼෍ͱ͍͏ɻ X Y (X,

    Y) p(x, y) p(x, y) ·ͨ֬཰ม਺ ͕༩͑ΒΕͨͱ͖ͷ ͷ৚݅෇͖֬཰෼෍Λ࣍ͷΑ͏ ʹఆٛ͢Δɻ X Y p(y|x) = p(x, y) p(x) पล֬཰෼෍͸࣍ͷΑ͏ʹఆٛ͢Δɻ p(x) = ∫ p(x, y)dy p(y) = ∫ p(x, y)dx
  8. ճؼؔ਺ ֬཰ม਺ ͷ֬཰෼෍ ʹ͍ͭͯߟ͑Δɻ ͷͱ͖ͷ ͷฏۉ஋Λ (X, Y) p(X, Y)

    X = x Y ͱॻ͘ɻ͜ͷؔ਺Λ ͔Β ͷճؼؔ਺ ৚݅෇͖ظ଴஋ ͱ͍͏ɻ x y [Y|x] = ∫ yp(y|x)dy ؔ਺Λ ͕༩͑ΒΕͨͱ͖ͦͷೋ৐ޡࠩΛද͢൚ؔ਺Λ y = f(x) [(Y − f(X))2] = ∫ ∫ (y − f(x))2p(y, x)dxdy ͱॻ͘ͱ͜Ε͸ ͷͱ͖ʹ࠷খʹͳΔɻ f(x) = [Y|x]
  9. ΧϧόοΫɾϥΠϒϥ৘ใྔ  ্ʹೋͭͷ֬཰෼෍ ͕͋Δͱ͖ ℝN q(x), p(x) D(p∥q) = ∫

    q(x)log q(x) p(x) dx ͷ͜ͱΛΧϧόοΫɾϥΠϒϥ৘ใྔ͋Δ͍͸૬ରΤϯτϩϐʔͱݺͿ ΧϧόοΫɾϥΠϒϥ৘ใྔ͸͕࣍੒Γཱͭɻ  ʹ͍ͭͯ Ͱ͋Δɻ   ͱͳΔͷ͸ ͷͱ͖ʹݶΔɻ ∀q(x), p(x) D(q∥p) ≥ 0 D(q∥p) = 0 q(x) = p(x)
  10. ΧϧόοΫɾϥΠϒϥ৘ใྔ  ূ໌ ͱ͓͘ͱɺ Ͱ͋Γɺ F(t) = 0 ⇔ t

    = 0 F(t) = t + et − 1 (−∞ < t < ∞)  ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ ∫ q(x)dx = 1 ∫ p(x)dx = 1 ∫ log q(x) p(x) dx = 0 ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e D(p∥q) ≃ ∫ q(x)(log q(x) − log p(x))2dx ͕੒Γཱͭɻ 
  11. ֬཰ऩଋ ֬཰ม਺ ͕ఆ਺ ʹ֬཰ऩଋ͢Δͱ͸ ʹର͠ɺ ʹ͓͍ͯ {Xn }n∈ℕ c ∀ϵ,

    ∀δ > 0 ∃N ∈ ℕ n > N ⇒ P(∥Xn − c∥ > ϵ) < δ ⇔ P(∥Xn − c∥ < ϵ) = 1 ͱͳΔ͜ͱͰ͋Δɻ ͜Ε͸େ਺ͷऑ๏ଇʹରԠ͍ͯ͠Δɻ Xn c ϵ ඪຊ͕े෼ʹେ͖͍ͱ͖ɺඪຊฏۉ͸฼ฏۉʹऩଋ͢Δ
  12. ๏ଇ ෼෍ ऩଋ ֬཰ม਺ͷྻ ͕֬཰ม਺ ʹ๏ଇ ෼෍ ऩଋ͢Δͱ͸ ͷ֬཰෼෍͕ Ͱ

    ͷ֬཰෼෍͕ Ͱ͋Δͱ͖ɺ ೚ҙͷ༗ք͔ͭ࿈ଓͳؔ਺ ʹରͯ͠ {Xn }n∈ℕ X Xn qn (x) X q(x) F(x) lim n→∞ ∫ F(x)qn (x)dx = ∫ F(x)q(x)dx ⇔ lim n→∞ [F(Xn )] = [F(X)] ͕੒Γཱͭ͜ͱͰ͋Δɻ͜Ε͸த৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ ඪຊ͕े෼ʹେ͖͍ͱ͖ɺ฼ूஂͷ෼෍ʹؔΘΒͣඪຊฏۉͱ฼ฏۉͷࠩ͸ਖ਼ن෼෍ʹै͏
  13. ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ ϢʔΫϦουۭؒ ͷ෦෼ू߹ ͕։ू߹ͷ଒ ʹ ͍ͭͯ ͳΒ͹ɺͦͷ༗ݶݸͷ։ू߹ Ͱ ℝN W

    = {O}λ∈Λ W ⊂ ⋃ λ∈Λ Oλ O1 , …, On ∈ ͱͳΔ΋ͷ͕͋Δͱ͖ɺ ͸ίϯύΫτͰ͋Δͱ͍͏ W ⊂ O1 ∪ … ∪ On W O1 , …, On ∈ W
  14. ؔ਺্ۭؒͷେ਺ͷ๏ଇ ϢʔΫϦουۭؒ ʹ஋ΛऔΔ ͕֬཰ม਺ ͱ ಉ֬͡཰෼෍ʹै͏ͱ͢Δɻ ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ ℝN X1

    , X2 , …, Xn X w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1 X [ sup w∈W |f(X, w)|] < ∞, X [ sup w∈W |∇w f(X, w)|] < ∞ ৚݅ ͕੒ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ ∀ϵ > 0 P( sup w∈W 1 n n ∑ i=1 f(Xi , w) − X [f(X, w)] < ϵ) = 1 ͜ͷ͜ͱΛؔ਺্ۭؒͷେ਺ͷ๏ଇͱ͍͏
  15. ਖ਼ن֬཰աఔ ू߹ ্ͷؔ਺Ͱ֬཰తʹมಈ͢Δ΋ͷ ͕ɺ ฏۉؔ਺ ͱ૬ؔؔ਺ Λ࣋ͭਖ਼ن֬཰աఔͰ͋Δͱ͸ɺ ֤ ͝ͱʹ ͕ਖ਼ن෼෍ʹै͏֬཰ม਺Ͱ͋Γɺ

    W ξ(w) m(w) ρ(w, w′ ) w ξ(w)   m(w) = ξ [ξ(w)],   ρ(w, w′ ) = ξ [ξ(w)ξ(w′ )] ͕੒Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ͸ɺ֬཰աఔ ʹ͍ͭͯͷฏۉΛ ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬཰աఔ͸ɺ ξ [ ⋅ ] ξ ฏۉؔ਺ͱ૬ؔؔ਺͕ܾ·ΔͱҰҙʹఆ·Δ͜ͱ͕஌ΒΕ͍ͯΔɻ
  16. ܦݧաఔ  ͭ͗ʹ X[ sup w∈W |f(X, w) − X

    [f(X, w)]|α ] < ∞ X[ sup w∈W |∇w (f(X, w) − X [f(X, w)])|α ] < ∞ ͕ Ͱ੒ΓཱͭͱԾఆ͢Δɻ α = 2 Yn (w) = 1 n n ∑ i=1 (f(Xi , w) − X [f(X, w)]) ͜ͷ֬཰աఔ Λܦݧաఔͱ͍͏ɻ Yn (w)
  17. ܦݧաఔ  ֬཰աఔ ܦݧաఔ  ͸ฏۉ͕ Ͱ૬ؔؔ਺͕ Yn (w) 0

    ͷਖ਼ن֬཰աఔ ʹ๏ଇऩଋ͢Δɻ Y(w)   ρ(w, w′ ) = X [f(X, w)f(X, w′ )] − X [f(X, w)]X [f(X, w′ )]
  18. ֬཰աఔͷ๏ଇऩଋ ֬཰աఔ ܦݧաఔ  ͕֬཰աఔ ʹ๏ଇऩଋ͢Δͱ͸ɺ ༗ք࿈ଓͳ൚ؔ਺ ʹ͍ͭͯ Yn (w)

    Y(w) F( ⋅ ) ͕੒Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ਺ ͕࿈ଓͰ͋Δͱ͸ F( ⋅ )   lim n→∞ [F(Yn )] = Y [F(Y)]   lim n→∞ sup w∈W |fn (w) − f(w)| → 0 ⇒ lim n→∞ F(fn ) = F(f ) ͕੒Γཱͭ͜ͱͰ͋Δɻ ͜ͷΑ͏ͳܗͷఆཧΛؔ਺্ۭؒͷத৺ۃݶఆཧͱ͍͏ɻ