Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初等確率論の基礎
Search
Koga Kobayashi
August 17, 2020
Research
1
180
初等確率論の基礎
「ベイズ統計の理論と方法」勉強会の資料
Koga Kobayashi
August 17, 2020
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.7k
基礎数学の公式
kajyuuen
1
160
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
940
Fundamentals of Music Processing (Chapter 5)
kajyuuen
0
96
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.6k
SecHack365 北海道会 LT
kajyuuen
0
530
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.3k
Other Decks in Research
See All in Research
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
130
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
110
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
130
説明可能な機械学習と数理最適化
kelicht
2
810
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
110
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
480
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
490
CoRL2025速報
rpc
4
3.8k
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
590
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Making Projects Easy
brettharned
120
6.5k
Building an army of robots
kneath
306
46k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
110
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
94
From π to Pie charts
rasagy
0
100
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
37
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
51
Transcript
ॳ֬ͷجૅ ϕΠζ౷ܭͷཧͱํ๏ษڧձ
֬ͱ֬ม
֬ ϢʔΫϦουۭؒ ͷݩ ͷؔ ͕ ℝN x = (x1 ,
…, xN ) q(x) ≥ 0 ∫ q(x)dx ≡ ∫ dx1 ∫ dx2 … ∫ dxN q(x1 , x2 , ⋯, xN ) = 1 Λຬͨ͢ͱ͖ Λ֬͋Δ͍֬ີؔͱ͍͏ɻ q(x) ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬ A ⊂ ℝN q(x) A Q(A) = ∫ A q(x)dx ͜ͷͱ͖ɺؔ ֬ͱ͍͏ɻ Q( ⋅ )
֬ม ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹΛऔΔม Λ ʮ ʹΛऔΔ֬มʯͱ͍͏ɻ ℝN X ℝN ʮ
ͱͳΔ֬ʯ͕ Ͱ͋Δͱ͖ ʮ֬ม ͷ֬ Ͱ͋Δʯ͋Δ͍ ʮ֬ม ͷ֬ ʹै͏ʯ͋Δ͍ ʮ֬ม ͷ֬ Ͱ͋Δʯͱ͍͏ɻ X ∈ A Q(A) X q(x) X q(x) X Q
۩ମྫਅͷ αϯϓϧ ͕͋Δ֬ ʹಠཱʹै͏ ֬มͷ࣮ݱʢ؍ଌʣͩͱ͢Δɻ A = xn = {x1
, …, xn } ⊂ ℝN q(x) ͢ͳΘͪ Λ ্ͷ xn (ℝN)n q(xn) = n ∏ i=1 q(xi ) = q(x1 )q(x2 )⋯q(xn ) Λ࣋ͭ֬ม ͷ࣮ݱͰ͋Δͱߟ͑Δɻ ͜ͷͱ͖֬ ΛਅͷͱݺͿɻ Xn = (X1 , X2 , …, Xn ) q(x)
ฏۉͱࢄ
ฏۉͱࢄ ʹΛͱΔ֬ม ͷ֬Λ ͱ͢Δɻ ℝN X q(x) [f(X)] ≡ ∫
f(x)q(x)dx [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T] = [f(X)f(X)T] − [f(X)][f(X)T] ͱఆٛ͢Δɻ ͕༩͑ΒΕͨͱ͖ɺ֬ม ͷฏۉΛ f : ℝN → ℝM f(X) ·ͨࢄڞࢄΛ ͱఆٛ͢Δɻ֬มΛ໌ه͍ͨ͠ͱ͖ ͱॻ͘ɻ X [f(X)]
۩ମྫαϯϓϧͷฏۉ αϯϓϧ Λද֬͢มΛ ͱ͢Δɻ ͦͷؔ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉΛऔΔૢ࡞ Λ xn = {x1
, …, xn } Xn = (X1 , X2 , …, Xn ) f(Xn) [ ⋅ ] ͱදه͢Δɻ ͜ͷฏۉ ΛʮαϯϓϧͷݱΕํʹର͢ΔฏۉʯͱݺͿɻ [ ⋅ ] [f(XN)] = ∫ ∫ ⋯ ∫ f(x1 , …, xn ) n ∏ i=1 q(xi )dxi
۩ମྫਅͷͷฏۉ αϯϓϧͷ֬มΛ Λ༻͍ͯɺ ਅͷ ͷਪଌΛߦͬͨޙɺਅͷͷ֬ม Λൃੜͤͯ͞ ਪଌ݁ՌͷΑ͞ΛධՁ͍ͨ͠ɻ ͜ͷ֬ม ͷؔ ʹ͍ͭͯͷฏۉΛ
Xn = (X1 , X2 , …, Xn ) q(x) X X f(X) ͱදه͢Δɻ [f(X)]X = ∫ f(x)q(x)dx
X X−1 ۭ֬ؒ(Ω = ℝM, ℬ, p) w ∈ Ω
ٯ૾X−1(A) ֬ີؔ ֬ q(x) = p(X−1(x)) Մଌۭؒ(Ω′ = ℝN, ℬ′ ) A ∈ ℬ′ X(w) = X x ∈ Ω′ ֬Q(A) = ∫ A q(x)dx f(x) ฏۉ[f(X)] ≡ ∫ f(x)q(x)dx = ∫ f(x)p(X−1(x))dx = ∫ p(w)X(w)dw = ∫ pXdw ֬ม ֬มͱ֬ɺฏۉͷؔ ۭ֬ؒ(Ω′ = ℝN, ℬ′ , q)
ಉ࣌ͱ͖݅֬
ಉ࣌ͱ͖݅ ͭͷ֬ม ͱ ͕͋Δͱ͖ɺͦͷ ͷ͕֬ Ͱ͋Δͱ͖ɺ Λಉ࣌֬ͱ͍͏ɻ X Y (X,
Y) p(x, y) p(x, y) ·ͨ֬ม ͕༩͑ΒΕͨͱ͖ͷ ͷ͖݅֬Λ࣍ͷΑ͏ ʹఆٛ͢Δɻ X Y p(y|x) = p(x, y) p(x) पล֬࣍ͷΑ͏ʹఆٛ͢Δɻ p(x) = ∫ p(x, y)dy p(y) = ∫ p(x, y)dx
ճؼؔ ֬ม ͷ֬ ʹ͍ͭͯߟ͑Δɻ ͷͱ͖ͷ ͷฏۉΛ (X, Y) p(X, Y)
X = x Y ͱॻ͘ɻ͜ͷؔΛ ͔Β ͷճؼؔ ͖݅ظ ͱ͍͏ɻ x y [Y|x] = ∫ yp(y|x)dy ؔΛ ͕༩͑ΒΕͨͱ͖ͦͷೋޡࠩΛද͢൚ؔΛ y = f(x) [(Y − f(X))2] = ∫ ∫ (y − f(x))2p(y, x)dxdy ͱॻ͘ͱ͜Ε ͷͱ͖ʹ࠷খʹͳΔɻ f(x) = [Y|x]
ΧϧόοΫɾϥΠϒϥใྔ
ΧϧόοΫɾϥΠϒϥใྔ ্ʹೋͭͷ֬ ͕͋Δͱ͖ ℝN q(x), p(x) D(p∥q) = ∫
q(x)log q(x) p(x) dx ͷ͜ͱΛΧϧόοΫɾϥΠϒϥใྔ͋Δ͍૬ରΤϯτϩϐʔͱݺͿ ΧϧόοΫɾϥΠϒϥใྔ͕࣍Γཱͭɻ ʹ͍ͭͯ Ͱ͋Δɻ ͱͳΔͷ ͷͱ͖ʹݶΔɻ ∀q(x), p(x) D(q∥p) ≥ 0 D(q∥p) = 0 q(x) = p(x)
ΧϧόοΫɾϥΠϒϥใྔ ূ໌ ͱ͓͘ͱɺ Ͱ͋Γɺ F(t) = 0 ⇔ t
= 0 F(t) = t + et − 1 (−∞ < t < ∞) ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ ∫ q(x)dx = 1 ∫ p(x)dx = 1 ∫ log q(x) p(x) dx = 0 ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e D(p∥q) ≃ ∫ q(x)(log q(x) − log p(x))2dx ͕Γཱͭɻ
ۃݶఆཧ
֬มͷऩଋ
֬ऩଋ ֬ม ͕ఆ ʹ֬ऩଋ͢Δͱ ʹର͠ɺ ʹ͓͍ͯ {Xn }n∈ℕ c ∀ϵ,
∀δ > 0 ∃N ∈ ℕ n > N ⇒ P(∥Xn − c∥ > ϵ) < δ ⇔ P(∥Xn − c∥ < ϵ) = 1 ͱͳΔ͜ͱͰ͋Δɻ ͜Εେͷऑ๏ଇʹରԠ͍ͯ͠Δɻ Xn c ϵ ඪຊ͕ेʹେ͖͍ͱ͖ɺඪຊฏۉฏۉʹऩଋ͢Δ
๏ଇ ऩଋ ֬มͷྻ ͕֬ม ʹ๏ଇ ऩଋ͢Δͱ ͷ͕֬ Ͱ
ͷ͕֬ Ͱ͋Δͱ͖ɺ ҙͷ༗ք͔ͭ࿈ଓͳؔ ʹରͯ͠ {Xn }n∈ℕ X Xn qn (x) X q(x) F(x) lim n→∞ ∫ F(x)qn (x)dx = ∫ F(x)q(x)dx ⇔ lim n→∞ [F(Xn )] = [F(X)] ͕Γཱͭ͜ͱͰ͋Δɻ͜Εத৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ ඪຊ͕ेʹେ͖͍ͱ͖ɺूஂͷʹؔΘΒͣඪຊฏۉͱฏۉͷࠩਖ਼نʹै͏
ܦݧաఔ
ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ ϢʔΫϦουۭؒ ͷ෦ू߹ ͕։ू߹ͷ ʹ ͍ͭͯ ͳΒɺͦͷ༗ݶݸͷ։ू߹ Ͱ ℝN W
= {O}λ∈Λ W ⊂ ⋃ λ∈Λ Oλ O1 , …, On ∈ ͱͳΔͷ͕͋Δͱ͖ɺ ίϯύΫτͰ͋Δͱ͍͏ W ⊂ O1 ∪ … ∪ On W O1 , …, On ∈ W
্ۭؔؒͷେͷ๏ଇ ϢʔΫϦουۭؒ ʹΛऔΔ ͕֬ม ͱ ಉ֬͡ʹै͏ͱ͢Δɻ ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ ℝN X1
, X2 , …, Xn X w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1 X [ sup w∈W |f(X, w)|] < ∞, X [ sup w∈W |∇w f(X, w)|] < ∞ ݅ ͕ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ ∀ϵ > 0 P( sup w∈W 1 n n ∑ i=1 f(Xi , w) − X [f(X, w)] < ϵ) = 1 ͜ͷ͜ͱΛ্ۭؔؒͷେͷ๏ଇͱ͍͏
ਖ਼ن֬աఔ ू߹ ্ͷؔͰ֬తʹมಈ͢Δͷ ͕ɺ ฏۉؔ ͱ૬ؔؔ Λ࣋ͭਖ਼ن֬աఔͰ͋Δͱɺ ֤ ͝ͱʹ ͕ਖ਼نʹै͏֬มͰ͋Γɺ
W ξ(w) m(w) ρ(w, w′ ) w ξ(w) m(w) = ξ [ξ(w)], ρ(w, w′ ) = ξ [ξ(w)ξ(w′ )] ͕Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ɺ֬աఔ ʹ͍ͭͯͷฏۉΛ ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬աఔɺ ξ [ ⋅ ] ξ ฏۉؔͱ૬͕ܾؔؔ·ΔͱҰҙʹఆ·Δ͜ͱ͕ΒΕ͍ͯΔɻ
ܦݧաఔ ͭ͗ʹ X[ sup w∈W |f(X, w) − X
[f(X, w)]|α ] < ∞ X[ sup w∈W |∇w (f(X, w) − X [f(X, w)])|α ] < ∞ ͕ ͰΓཱͭͱԾఆ͢Δɻ α = 2 Yn (w) = 1 n n ∑ i=1 (f(Xi , w) − X [f(X, w)]) ͜ͷ֬աఔ Λܦݧաఔͱ͍͏ɻ Yn (w)
ܦݧաఔ ֬աఔ ܦݧաఔ ฏۉ͕ Ͱ૬͕ؔؔ Yn (w) 0
ͷਖ਼ن֬աఔ ʹ๏ଇऩଋ͢Δɻ Y(w) ρ(w, w′ ) = X [f(X, w)f(X, w′ )] − X [f(X, w)]X [f(X, w′ )]
֬աఔͷ๏ଇऩଋ ֬աఔ ܦݧաఔ ͕֬աఔ ʹ๏ଇऩଋ͢Δͱɺ ༗ք࿈ଓͳ൚ؔ ʹ͍ͭͯ Yn (w)
Y(w) F( ⋅ ) ͕Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ ͕࿈ଓͰ͋Δͱ F( ⋅ ) lim n→∞ [F(Yn )] = Y [F(Y)] lim n→∞ sup w∈W |fn (w) − f(w)| → 0 ⇒ lim n→∞ F(fn ) = F(f ) ͕Γཱͭ͜ͱͰ͋Δɻ ͜ͷΑ͏ͳܗͷఆཧΛ্ۭؔؒͷத৺ۃݶఆཧͱ͍͏ɻ
ࢀߟࢿྉ w ֬ೖ ล w ܦݧաఔͱ ล w ϕΠζ౷ܭͷཧͱํ๏ ล
w ଌɾ֬ɾϧϕʔάੵ ݪܒհ