$30 off During Our Annual Pro Sale. View Details »

初等確率論の基礎

 初等確率論の基礎

「ベイズ統計の理論と方法」勉強会の資料

Koga Kobayashi

August 17, 2020
Tweet

More Decks by Koga Kobayashi

Other Decks in Research

Transcript

  1. ॳ౳֬཰࿦ͷجૅ
    ϕΠζ౷ܭͷཧ࿦ͱํ๏ษڧձ

    View Slide

  2. ֬཰෼෍ͱ֬཰ม਺

    View Slide

  3. ֬཰෼෍
    ϢʔΫϦουۭؒ ͷݩ ͷؔ਺ ͕
    ℝN x = (x1
    , …, xN
    ) q(x) ≥ 0

    q(x)dx ≡

    dx1 ∫
    dx2


    dxN
    q(x1
    , x2
    , ⋯, xN
    ) = 1
    Λຬͨ͢ͱ͖ Λ֬཰෼෍͋Δ͍͸֬཰ີ౓ؔ਺ͱ͍͏ɻ
    q(x)
    ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬཰͸
    A ⊂ ℝN q(x) A
    Q(A) =

    A
    q(x)dx
    ͜ͷͱ͖ɺؔ਺ ΋֬཰෼෍ͱ͍͏ɻ
    Q( ⋅ )

    View Slide

  4. ֬཰ม਺
    ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹ஋ΛऔΔม਺ Λ
    ʮ ʹ஋ΛऔΔ֬཰ม਺ʯͱ͍͏ɻ
    ℝN X
    ℝN
    ʮ ͱͳΔ֬཰ʯ͕ Ͱ͋Δͱ͖
    ʮ֬཰ม਺ ͷ֬཰෼෍͸ Ͱ͋Δʯ͋Δ͍͸
    ʮ֬཰ม਺ ͷ֬཰෼෍͸ ʹै͏ʯ͋Δ͍͸
    ʮ֬཰ม਺ ͷ֬཰෼෍͸ Ͱ͋Δʯͱ͍͏ɻ
    X ∈ A Q(A)
    X q(x)
    X q(x)
    X Q

    View Slide

  5. ۩ମྫਅͷ෼෍
    αϯϓϧ ͕͋Δ֬཰෼෍ ʹಠཱʹै͏
    ֬཰ม਺ͷ࣮ݱ஋ʢ؍ଌ஋ʣͩͱ͢Δɻ
    A = xn = {x1
    , …, xn
    } ⊂ ℝN q(x)
    ͢ͳΘͪ Λ ্ͷ෼෍
    xn (ℝN)n
    q(xn) =
    n

    i=1
    q(xi
    ) = q(x1
    )q(x2
    )⋯q(xn
    )
    Λ࣋ͭ֬཰ม਺ ͷ࣮ݱ஋Ͱ͋Δͱߟ͑Δɻ
    ͜ͷͱ͖֬཰෼෍ Λਅͷ෼෍ͱݺͿɻ
    Xn = (X1
    , X2
    , …, Xn
    )
    q(x)

    View Slide

  6. ฏۉͱ෼ࢄ

    View Slide

  7. ฏۉͱ෼ࢄ
    ʹ஋ΛͱΔ֬཰ม਺ ͷ֬཰෼෍Λ ͱ͢Δɻ
    ℝN X q(x)
    [f(X)] ≡

    f(x)q(x)dx
    [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T]
    = [f(X)f(X)T] − [f(X)][f(X)T]
    ͱఆٛ͢Δɻ
    ͕༩͑ΒΕͨͱ͖ɺ֬཰ม਺ ͷฏۉΛ
    f : ℝN → ℝM f(X)
    ·ͨ෼ࢄڞ෼ࢄΛ
    ͱఆٛ͢Δɻ֬཰ม਺Λ໌ه͍ͨ͠ͱ͖͸ ͱॻ͘ɻ
    X
    [f(X)]

    View Slide

  8. ۩ମྫαϯϓϧͷฏۉ஋
    αϯϓϧ Λද֬͢཰ม਺Λ ͱ͢Δɻ
    ͦͷؔ਺ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉ஋ΛऔΔૢ࡞ Λ
    xn = {x1
    , …, xn
    } Xn = (X1
    , X2
    , …, Xn
    )
    f(Xn) [ ⋅ ]
    ͱදه͢Δɻ

    ͜ͷฏۉ஋ ΛʮαϯϓϧͷݱΕํʹର͢Δฏۉ஋ʯͱݺͿɻ
    [ ⋅ ]
    [f(XN)] =
    ∫ ∫


    f(x1
    , …, xn
    )
    n

    i=1
    q(xi
    )dxi

    View Slide

  9. ۩ମྫਅͷ෼෍ͷฏۉ
    αϯϓϧͷ֬཰ม਺Λ Λ༻͍ͯɺ
    ਅͷ෼෍ ͷਪଌΛߦͬͨޙɺਅͷ෼෍ͷ֬཰ม਺ Λൃੜͤͯ͞
    ਪଌ݁ՌͷΑ͞ΛධՁ͍ͨ͠ɻ
    ͜ͷ֬཰ม਺ ͷؔ਺ ʹ͍ͭͯͷฏۉΛ
    Xn = (X1
    , X2
    , …, Xn
    )
    q(x) X
    X f(X)
    ͱදه͢Δɻ
    [f(X)]X
    =

    f(x)q(x)dx

    View Slide

  10. X
    X−1
    ֬཰ۭؒ(Ω = ℝM, ℬ, p)
    w ∈ Ω
    ٯ૾X−1(A)
    ֬཰ີ౓ؔ਺ ֬཰෼෍
    q(x) = p(X−1(x))
    Մଌۭؒ(Ω′ = ℝN, ℬ′ )
    A ∈ ℬ′
    X(w) = X
    x ∈ Ω′
    ֬཰෼෍Q(A) =

    A
    q(x)dx
    f(x)
    ฏۉ[f(X)] ≡

    f(x)q(x)dx =

    f(x)p(X−1(x))dx =

    p(w)X(w)dw =

    pXdw
    ֬཰ม਺
    ֬཰ม਺ͱ֬཰෼෍ɺฏۉͷؔ܎
    ֬཰ۭؒ(Ω′ = ℝN, ℬ′ , q)

    View Slide

  11. ಉ࣌෼෍ͱ৚݅෇͖֬཰

    View Slide

  12. ಉ࣌෼෍ͱ৚݅෇͖෼෍
    ͭͷ֬཰ม਺ ͱ ͕͋Δͱ͖ɺͦͷ૊ ͷ֬཰෼෍͕
    Ͱ͋Δͱ͖ɺ Λಉ࣌֬཰෼෍ͱ͍͏ɻ
    X Y (X, Y)
    p(x, y) p(x, y)
    ·ͨ֬཰ม਺ ͕༩͑ΒΕͨͱ͖ͷ ͷ৚݅෇͖֬཰෼෍Λ࣍ͷΑ͏
    ʹఆٛ͢Δɻ
    X Y
    p(y|x) =
    p(x, y)
    p(x)
    पล֬཰෼෍͸࣍ͷΑ͏ʹఆٛ͢Δɻ
    p(x) =

    p(x, y)dy p(y) =

    p(x, y)dx

    View Slide

  13. ճؼؔ਺
    ֬཰ม਺ ͷ֬཰෼෍ ʹ͍ͭͯߟ͑Δɻ
    ͷͱ͖ͷ ͷฏۉ஋Λ
    (X, Y) p(X, Y)
    X = x Y
    ͱॻ͘ɻ͜ͷؔ਺Λ ͔Β ͷճؼؔ਺ ৚݅෇͖ظ଴஋
    ͱ͍͏ɻ
    x y
    [Y|x] =

    yp(y|x)dy
    ؔ਺Λ ͕༩͑ΒΕͨͱ͖ͦͷೋ৐ޡࠩΛද͢൚ؔ਺Λ
    y = f(x)
    [(Y − f(X))2] =
    ∫ ∫
    (y − f(x))2p(y, x)dxdy
    ͱॻ͘ͱ͜Ε͸ ͷͱ͖ʹ࠷খʹͳΔɻ
    f(x) = [Y|x]

    View Slide

  14. ΧϧόοΫɾϥΠϒϥ৘ใྔ

    View Slide

  15. ΧϧόοΫɾϥΠϒϥ৘ใྔ

    ্ʹೋͭͷ֬཰෼෍ ͕͋Δͱ͖
    ℝN q(x), p(x)
    D(p∥q) =

    q(x)log
    q(x)
    p(x)
    dx
    ͷ͜ͱΛΧϧόοΫɾϥΠϒϥ৘ใྔ͋Δ͍͸૬ରΤϯτϩϐʔͱݺͿ
    ΧϧόοΫɾϥΠϒϥ৘ใྔ͸͕࣍੒Γཱͭɻ
    ʹ͍ͭͯ Ͱ͋Δɻ
    ͱͳΔͷ͸ ͷͱ͖ʹݶΔɻ
    ∀q(x), p(x) D(q∥p) ≥ 0
    D(q∥p) = 0 q(x) = p(x)

    View Slide

  16. ΧϧόοΫɾϥΠϒϥ৘ใྔ

    ূ໌

    ͱ͓͘ͱɺ Ͱ͋Γɺ
    F(t) = 0 ⇔ t = 0
    F(t) = t + et − 1 (−∞ < t < ∞)
    ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ

    q(x)dx = 1

    p(x)dx = 1

    log
    q(x)
    p(x)
    dx = 0
    ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ
    q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e
    D(p∥q) ≃

    q(x)(log q(x) − log p(x))2dx
    ͕੒Γཱͭɻ

    View Slide

  17. ۃݶఆཧ

    View Slide

  18. ֬཰ม਺ͷऩଋ

    View Slide

  19. ֬཰ऩଋ
    ֬཰ม਺ ͕ఆ਺ ʹ֬཰ऩଋ͢Δͱ͸
    ʹର͠ɺ ʹ͓͍ͯ
    {Xn
    }n∈ℕ
    c
    ∀ϵ, ∀δ > 0 ∃N ∈ ℕ
    n > N ⇒ P(∥Xn
    − c∥ > ϵ) < δ
    ⇔ P(∥Xn
    − c∥ < ϵ) = 1
    ͱͳΔ͜ͱͰ͋Δɻ
    ͜Ε͸େ਺ͷऑ๏ଇʹରԠ͍ͯ͠Δɻ
    Xn
    c
    ϵ
    ඪຊ͕े෼ʹେ͖͍ͱ͖ɺඪຊฏۉ͸฼ฏۉʹऩଋ͢Δ

    View Slide

  20. ๏ଇ ෼෍
    ऩଋ
    ֬཰ม਺ͷྻ ͕֬཰ม਺ ʹ๏ଇ ෼෍
    ऩଋ͢Δͱ͸
    ͷ֬཰෼෍͕ Ͱ ͷ֬཰෼෍͕ Ͱ͋Δͱ͖ɺ
    ೚ҙͷ༗ք͔ͭ࿈ଓͳؔ਺ ʹରͯ͠
    {Xn
    }n∈ℕ
    X
    Xn
    qn
    (x) X q(x)
    F(x)
    lim
    n→∞

    F(x)qn
    (x)dx =

    F(x)q(x)dx
    ⇔ lim
    n→∞
    [F(Xn
    )] = [F(X)]
    ͕੒Γཱͭ͜ͱͰ͋Δɻ͜Ε͸த৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ
    ඪຊ͕े෼ʹେ͖͍ͱ͖ɺ฼ूஂͷ෼෍ʹؔΘΒͣඪຊฏۉͱ฼ฏۉͷࠩ͸ਖ਼ن෼෍ʹै͏

    View Slide

  21. ܦݧաఔ

    View Slide

  22. ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ
    ϢʔΫϦουۭؒ ͷ෦෼ू߹ ͕։ू߹ͷ଒ ʹ
    ͍ͭͯ ͳΒ͹ɺͦͷ༗ݶݸͷ։ू߹ Ͱ
    ℝN W = {O}λ∈Λ
    W ⊂ ⋃
    λ∈Λ

    O1
    , …, On

    ͱͳΔ΋ͷ͕͋Δͱ͖ɺ ͸ίϯύΫτͰ͋Δͱ͍͏
    W ⊂ O1
    ∪ … ∪ On
    W
    O1
    , …, On

    W

    View Slide

  23. ؔ਺্ۭؒͷେ਺ͷ๏ଇ
    ϢʔΫϦουۭؒ ʹ஋ΛऔΔ ͕֬཰ม਺ ͱ
    ಉ֬͡཰෼෍ʹै͏ͱ͢Δɻ
    ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ
    ℝN X1
    , X2
    , …, Xn
    X
    w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1
    X
    [ sup
    w∈W
    |f(X, w)|] < ∞, X
    [ sup
    w∈W
    |∇w
    f(X, w)|] < ∞
    ৚݅
    ͕੒ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ
    ∀ϵ > 0
    P( sup
    w∈W
    1
    n
    n

    i=1
    f(Xi
    , w) − X
    [f(X, w)] < ϵ) = 1
    ͜ͷ͜ͱΛؔ਺্ۭؒͷେ਺ͷ๏ଇͱ͍͏

    View Slide

  24. ਖ਼ن֬཰աఔ
    ू߹ ্ͷؔ਺Ͱ֬཰తʹมಈ͢Δ΋ͷ ͕ɺ
    ฏۉؔ਺ ͱ૬ؔؔ਺ Λ࣋ͭਖ਼ن֬཰աఔͰ͋Δͱ͸ɺ
    ֤ ͝ͱʹ ͕ਖ਼ن෼෍ʹै͏֬཰ม਺Ͱ͋Γɺ
    W ξ(w)
    m(w) ρ(w, w′ )
    w ξ(w)

    m(w) = ξ
    [ξ(w)],
    ρ(w, w′ ) = ξ
    [ξ(w)ξ(w′ )]
    ͕੒Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ͸ɺ֬཰աఔ ʹ͍ͭͯͷฏۉΛ
    ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬཰աఔ͸ɺ
    ξ
    [ ⋅ ] ξ
    ฏۉؔ਺ͱ૬ؔؔ਺͕ܾ·ΔͱҰҙʹఆ·Δ͜ͱ͕஌ΒΕ͍ͯΔɻ

    View Slide

  25. ܦݧաఔ

    ͭ͗ʹ
    X[ sup
    w∈W
    |f(X, w) − X
    [f(X, w)]|α
    ] < ∞
    X[ sup
    w∈W
    |∇w
    (f(X, w) − X
    [f(X, w)])|α
    ] < ∞
    ͕ Ͱ੒ΓཱͭͱԾఆ͢Δɻ
    α = 2
    Yn
    (w) =
    1
    n
    n

    i=1
    (f(Xi
    , w) − X
    [f(X, w)])
    ͜ͷ֬཰աఔ Λܦݧաఔͱ͍͏ɻ
    Yn
    (w)

    View Slide

  26. ܦݧաఔ

    ֬཰աఔ ܦݧաఔ
    ͸ฏۉ͕ Ͱ૬ؔؔ਺͕
    Yn
    (w) 0
    ͷਖ਼ن֬཰աఔ ʹ๏ଇऩଋ͢Δɻ
    Y(w)

    ρ(w, w′ ) = X
    [f(X, w)f(X, w′ )] − X
    [f(X, w)]X
    [f(X, w′ )]

    View Slide

  27. ֬཰աఔͷ๏ଇऩଋ
    ֬཰աఔ ܦݧաఔ
    ͕֬཰աఔ ʹ๏ଇऩଋ͢Δͱ͸ɺ
    ༗ք࿈ଓͳ൚ؔ਺ ʹ͍ͭͯ
    Yn
    (w) Y(w)
    F( ⋅ )
    ͕੒Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ਺ ͕࿈ଓͰ͋Δͱ͸
    F( ⋅ )

    lim
    n→∞
    [F(Yn
    )] = Y
    [F(Y)]

    lim
    n→∞
    sup
    w∈W
    |fn
    (w) − f(w)| → 0 ⇒ lim
    n→∞
    F(fn
    ) = F(f )
    ͕੒Γཱͭ͜ͱͰ͋Δɻ
    ͜ͷΑ͏ͳܗͷఆཧΛؔ਺্ۭؒͷத৺ۃݶఆཧͱ͍͏ɻ

    View Slide

  28. ࢀߟࢿྉ
    w ֬཰࿦ೖ໳ ౉ล੅෉
    w ܦݧաఔͱ͸ ౉ล੅෉
    w ϕΠζ౷ܭͷཧ࿦ͱํ๏ ౉ล੅෉
    w ଌ౓ɾ֬཰ɾϧϕʔάੵ෼ ݪܒհ

    View Slide