Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初等確率論の基礎
Search
Koga Kobayashi
August 17, 2020
Research
1
180
初等確率論の基礎
「ベイズ統計の理論と方法」勉強会の資料
Koga Kobayashi
August 17, 2020
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.7k
基礎数学の公式
kajyuuen
1
150
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
920
Fundamentals of Music Processing (Chapter 5)
kajyuuen
0
89
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.5k
SecHack365 北海道会 LT
kajyuuen
0
520
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.3k
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
820
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
880
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
140
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
360
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
280
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
180
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
200
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
670
Generative Models 2025
takahashihiroshi
25
14k
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
190
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
370
ip71_contraflow_reconfiguration
stkmsd
0
110
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Designing Experiences People Love
moore
142
24k
Code Review Best Practice
trishagee
72
19k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Site-Speed That Sticks
csswizardry
13
940
Speed Design
sergeychernyshev
32
1.2k
Transcript
ॳ֬ͷجૅ ϕΠζ౷ܭͷཧͱํ๏ษڧձ
֬ͱ֬ม
֬ ϢʔΫϦουۭؒ ͷݩ ͷؔ ͕ ℝN x = (x1 ,
…, xN ) q(x) ≥ 0 ∫ q(x)dx ≡ ∫ dx1 ∫ dx2 … ∫ dxN q(x1 , x2 , ⋯, xN ) = 1 Λຬͨ͢ͱ͖ Λ֬͋Δ͍֬ີؔͱ͍͏ɻ q(x) ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬ A ⊂ ℝN q(x) A Q(A) = ∫ A q(x)dx ͜ͷͱ͖ɺؔ ֬ͱ͍͏ɻ Q( ⋅ )
֬ม ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹΛऔΔม Λ ʮ ʹΛऔΔ֬มʯͱ͍͏ɻ ℝN X ℝN ʮ
ͱͳΔ֬ʯ͕ Ͱ͋Δͱ͖ ʮ֬ม ͷ֬ Ͱ͋Δʯ͋Δ͍ ʮ֬ม ͷ֬ ʹै͏ʯ͋Δ͍ ʮ֬ม ͷ֬ Ͱ͋Δʯͱ͍͏ɻ X ∈ A Q(A) X q(x) X q(x) X Q
۩ମྫਅͷ αϯϓϧ ͕͋Δ֬ ʹಠཱʹै͏ ֬มͷ࣮ݱʢ؍ଌʣͩͱ͢Δɻ A = xn = {x1
, …, xn } ⊂ ℝN q(x) ͢ͳΘͪ Λ ্ͷ xn (ℝN)n q(xn) = n ∏ i=1 q(xi ) = q(x1 )q(x2 )⋯q(xn ) Λ࣋ͭ֬ม ͷ࣮ݱͰ͋Δͱߟ͑Δɻ ͜ͷͱ͖֬ ΛਅͷͱݺͿɻ Xn = (X1 , X2 , …, Xn ) q(x)
ฏۉͱࢄ
ฏۉͱࢄ ʹΛͱΔ֬ม ͷ֬Λ ͱ͢Δɻ ℝN X q(x) [f(X)] ≡ ∫
f(x)q(x)dx [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T] = [f(X)f(X)T] − [f(X)][f(X)T] ͱఆٛ͢Δɻ ͕༩͑ΒΕͨͱ͖ɺ֬ม ͷฏۉΛ f : ℝN → ℝM f(X) ·ͨࢄڞࢄΛ ͱఆٛ͢Δɻ֬มΛ໌ه͍ͨ͠ͱ͖ ͱॻ͘ɻ X [f(X)]
۩ମྫαϯϓϧͷฏۉ αϯϓϧ Λද֬͢มΛ ͱ͢Δɻ ͦͷؔ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉΛऔΔૢ࡞ Λ xn = {x1
, …, xn } Xn = (X1 , X2 , …, Xn ) f(Xn) [ ⋅ ] ͱදه͢Δɻ ͜ͷฏۉ ΛʮαϯϓϧͷݱΕํʹର͢ΔฏۉʯͱݺͿɻ [ ⋅ ] [f(XN)] = ∫ ∫ ⋯ ∫ f(x1 , …, xn ) n ∏ i=1 q(xi )dxi
۩ମྫਅͷͷฏۉ αϯϓϧͷ֬มΛ Λ༻͍ͯɺ ਅͷ ͷਪଌΛߦͬͨޙɺਅͷͷ֬ม Λൃੜͤͯ͞ ਪଌ݁ՌͷΑ͞ΛධՁ͍ͨ͠ɻ ͜ͷ֬ม ͷؔ ʹ͍ͭͯͷฏۉΛ
Xn = (X1 , X2 , …, Xn ) q(x) X X f(X) ͱදه͢Δɻ [f(X)]X = ∫ f(x)q(x)dx
X X−1 ۭ֬ؒ(Ω = ℝM, ℬ, p) w ∈ Ω
ٯ૾X−1(A) ֬ີؔ ֬ q(x) = p(X−1(x)) Մଌۭؒ(Ω′ = ℝN, ℬ′ ) A ∈ ℬ′ X(w) = X x ∈ Ω′ ֬Q(A) = ∫ A q(x)dx f(x) ฏۉ[f(X)] ≡ ∫ f(x)q(x)dx = ∫ f(x)p(X−1(x))dx = ∫ p(w)X(w)dw = ∫ pXdw ֬ม ֬มͱ֬ɺฏۉͷؔ ۭ֬ؒ(Ω′ = ℝN, ℬ′ , q)
ಉ࣌ͱ͖݅֬
ಉ࣌ͱ͖݅ ͭͷ֬ม ͱ ͕͋Δͱ͖ɺͦͷ ͷ͕֬ Ͱ͋Δͱ͖ɺ Λಉ࣌֬ͱ͍͏ɻ X Y (X,
Y) p(x, y) p(x, y) ·ͨ֬ม ͕༩͑ΒΕͨͱ͖ͷ ͷ͖݅֬Λ࣍ͷΑ͏ ʹఆٛ͢Δɻ X Y p(y|x) = p(x, y) p(x) पล֬࣍ͷΑ͏ʹఆٛ͢Δɻ p(x) = ∫ p(x, y)dy p(y) = ∫ p(x, y)dx
ճؼؔ ֬ม ͷ֬ ʹ͍ͭͯߟ͑Δɻ ͷͱ͖ͷ ͷฏۉΛ (X, Y) p(X, Y)
X = x Y ͱॻ͘ɻ͜ͷؔΛ ͔Β ͷճؼؔ ͖݅ظ ͱ͍͏ɻ x y [Y|x] = ∫ yp(y|x)dy ؔΛ ͕༩͑ΒΕͨͱ͖ͦͷೋޡࠩΛද͢൚ؔΛ y = f(x) [(Y − f(X))2] = ∫ ∫ (y − f(x))2p(y, x)dxdy ͱॻ͘ͱ͜Ε ͷͱ͖ʹ࠷খʹͳΔɻ f(x) = [Y|x]
ΧϧόοΫɾϥΠϒϥใྔ
ΧϧόοΫɾϥΠϒϥใྔ ্ʹೋͭͷ֬ ͕͋Δͱ͖ ℝN q(x), p(x) D(p∥q) = ∫
q(x)log q(x) p(x) dx ͷ͜ͱΛΧϧόοΫɾϥΠϒϥใྔ͋Δ͍૬ରΤϯτϩϐʔͱݺͿ ΧϧόοΫɾϥΠϒϥใྔ͕࣍Γཱͭɻ ʹ͍ͭͯ Ͱ͋Δɻ ͱͳΔͷ ͷͱ͖ʹݶΔɻ ∀q(x), p(x) D(q∥p) ≥ 0 D(q∥p) = 0 q(x) = p(x)
ΧϧόοΫɾϥΠϒϥใྔ ূ໌ ͱ͓͘ͱɺ Ͱ͋Γɺ F(t) = 0 ⇔ t
= 0 F(t) = t + et − 1 (−∞ < t < ∞) ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ ∫ q(x)dx = 1 ∫ p(x)dx = 1 ∫ log q(x) p(x) dx = 0 ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e D(p∥q) ≃ ∫ q(x)(log q(x) − log p(x))2dx ͕Γཱͭɻ
ۃݶఆཧ
֬มͷऩଋ
֬ऩଋ ֬ม ͕ఆ ʹ֬ऩଋ͢Δͱ ʹର͠ɺ ʹ͓͍ͯ {Xn }n∈ℕ c ∀ϵ,
∀δ > 0 ∃N ∈ ℕ n > N ⇒ P(∥Xn − c∥ > ϵ) < δ ⇔ P(∥Xn − c∥ < ϵ) = 1 ͱͳΔ͜ͱͰ͋Δɻ ͜Εେͷऑ๏ଇʹରԠ͍ͯ͠Δɻ Xn c ϵ ඪຊ͕ेʹେ͖͍ͱ͖ɺඪຊฏۉฏۉʹऩଋ͢Δ
๏ଇ ऩଋ ֬มͷྻ ͕֬ม ʹ๏ଇ ऩଋ͢Δͱ ͷ͕֬ Ͱ
ͷ͕֬ Ͱ͋Δͱ͖ɺ ҙͷ༗ք͔ͭ࿈ଓͳؔ ʹରͯ͠ {Xn }n∈ℕ X Xn qn (x) X q(x) F(x) lim n→∞ ∫ F(x)qn (x)dx = ∫ F(x)q(x)dx ⇔ lim n→∞ [F(Xn )] = [F(X)] ͕Γཱͭ͜ͱͰ͋Δɻ͜Εத৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ ඪຊ͕ेʹେ͖͍ͱ͖ɺूஂͷʹؔΘΒͣඪຊฏۉͱฏۉͷࠩਖ਼نʹै͏
ܦݧաఔ
ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ ϢʔΫϦουۭؒ ͷ෦ू߹ ͕։ू߹ͷ ʹ ͍ͭͯ ͳΒɺͦͷ༗ݶݸͷ։ू߹ Ͱ ℝN W
= {O}λ∈Λ W ⊂ ⋃ λ∈Λ Oλ O1 , …, On ∈ ͱͳΔͷ͕͋Δͱ͖ɺ ίϯύΫτͰ͋Δͱ͍͏ W ⊂ O1 ∪ … ∪ On W O1 , …, On ∈ W
্ۭؔؒͷେͷ๏ଇ ϢʔΫϦουۭؒ ʹΛऔΔ ͕֬ม ͱ ಉ֬͡ʹै͏ͱ͢Δɻ ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ ℝN X1
, X2 , …, Xn X w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1 X [ sup w∈W |f(X, w)|] < ∞, X [ sup w∈W |∇w f(X, w)|] < ∞ ݅ ͕ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ ∀ϵ > 0 P( sup w∈W 1 n n ∑ i=1 f(Xi , w) − X [f(X, w)] < ϵ) = 1 ͜ͷ͜ͱΛ্ۭؔؒͷେͷ๏ଇͱ͍͏
ਖ਼ن֬աఔ ू߹ ্ͷؔͰ֬తʹมಈ͢Δͷ ͕ɺ ฏۉؔ ͱ૬ؔؔ Λ࣋ͭਖ਼ن֬աఔͰ͋Δͱɺ ֤ ͝ͱʹ ͕ਖ਼نʹै͏֬มͰ͋Γɺ
W ξ(w) m(w) ρ(w, w′ ) w ξ(w) m(w) = ξ [ξ(w)], ρ(w, w′ ) = ξ [ξ(w)ξ(w′ )] ͕Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ɺ֬աఔ ʹ͍ͭͯͷฏۉΛ ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬աఔɺ ξ [ ⋅ ] ξ ฏۉؔͱ૬͕ܾؔؔ·ΔͱҰҙʹఆ·Δ͜ͱ͕ΒΕ͍ͯΔɻ
ܦݧաఔ ͭ͗ʹ X[ sup w∈W |f(X, w) − X
[f(X, w)]|α ] < ∞ X[ sup w∈W |∇w (f(X, w) − X [f(X, w)])|α ] < ∞ ͕ ͰΓཱͭͱԾఆ͢Δɻ α = 2 Yn (w) = 1 n n ∑ i=1 (f(Xi , w) − X [f(X, w)]) ͜ͷ֬աఔ Λܦݧաఔͱ͍͏ɻ Yn (w)
ܦݧաఔ ֬աఔ ܦݧաఔ ฏۉ͕ Ͱ૬͕ؔؔ Yn (w) 0
ͷਖ਼ن֬աఔ ʹ๏ଇऩଋ͢Δɻ Y(w) ρ(w, w′ ) = X [f(X, w)f(X, w′ )] − X [f(X, w)]X [f(X, w′ )]
֬աఔͷ๏ଇऩଋ ֬աఔ ܦݧաఔ ͕֬աఔ ʹ๏ଇऩଋ͢Δͱɺ ༗ք࿈ଓͳ൚ؔ ʹ͍ͭͯ Yn (w)
Y(w) F( ⋅ ) ͕Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ ͕࿈ଓͰ͋Δͱ F( ⋅ ) lim n→∞ [F(Yn )] = Y [F(Y)] lim n→∞ sup w∈W |fn (w) − f(w)| → 0 ⇒ lim n→∞ F(fn ) = F(f ) ͕Γཱͭ͜ͱͰ͋Δɻ ͜ͷΑ͏ͳܗͷఆཧΛ্ۭؔؒͷத৺ۃݶఆཧͱ͍͏ɻ
ࢀߟࢿྉ w ֬ೖ ล w ܦݧաఔͱ ล w ϕΠζ౷ܭͷཧͱํ๏ ล
w ଌɾ֬ɾϧϕʔάੵ ݪܒհ