Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初等確率論の基礎
Search
Koga Kobayashi
August 17, 2020
Research
1
180
初等確率論の基礎
「ベイズ統計の理論と方法」勉強会の資料
Koga Kobayashi
August 17, 2020
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1.7k
基礎数学の公式
kajyuuen
1
160
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
930
Fundamentals of Music Processing (Chapter 5)
kajyuuen
0
92
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.6k
SecHack365 北海道会 LT
kajyuuen
0
520
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.3k
Other Decks in Research
See All in Research
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
500
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
450
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
740
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
280
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
640
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
Remote sensing × Multi-modal meta survey
satai
4
640
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
120
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
320
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
10k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Building Adaptive Systems
keathley
44
2.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Done Done
chrislema
186
16k
Six Lessons from altMBA
skipperchong
29
4.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Visualization
eitanlees
150
16k
Transcript
ॳ֬ͷجૅ ϕΠζ౷ܭͷཧͱํ๏ษڧձ
֬ͱ֬ม
֬ ϢʔΫϦουۭؒ ͷݩ ͷؔ ͕ ℝN x = (x1 ,
…, xN ) q(x) ≥ 0 ∫ q(x)dx ≡ ∫ dx1 ∫ dx2 … ∫ dxN q(x1 , x2 , ⋯, xN ) = 1 Λຬͨ͢ͱ͖ Λ֬͋Δ͍֬ີؔͱ͍͏ɻ q(x) ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬ A ⊂ ℝN q(x) A Q(A) = ∫ A q(x)dx ͜ͷͱ͖ɺؔ ֬ͱ͍͏ɻ Q( ⋅ )
֬ม ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹΛऔΔม Λ ʮ ʹΛऔΔ֬มʯͱ͍͏ɻ ℝN X ℝN ʮ
ͱͳΔ֬ʯ͕ Ͱ͋Δͱ͖ ʮ֬ม ͷ֬ Ͱ͋Δʯ͋Δ͍ ʮ֬ม ͷ֬ ʹै͏ʯ͋Δ͍ ʮ֬ม ͷ֬ Ͱ͋Δʯͱ͍͏ɻ X ∈ A Q(A) X q(x) X q(x) X Q
۩ମྫਅͷ αϯϓϧ ͕͋Δ֬ ʹಠཱʹै͏ ֬มͷ࣮ݱʢ؍ଌʣͩͱ͢Δɻ A = xn = {x1
, …, xn } ⊂ ℝN q(x) ͢ͳΘͪ Λ ্ͷ xn (ℝN)n q(xn) = n ∏ i=1 q(xi ) = q(x1 )q(x2 )⋯q(xn ) Λ࣋ͭ֬ม ͷ࣮ݱͰ͋Δͱߟ͑Δɻ ͜ͷͱ͖֬ ΛਅͷͱݺͿɻ Xn = (X1 , X2 , …, Xn ) q(x)
ฏۉͱࢄ
ฏۉͱࢄ ʹΛͱΔ֬ม ͷ֬Λ ͱ͢Δɻ ℝN X q(x) [f(X)] ≡ ∫
f(x)q(x)dx [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T] = [f(X)f(X)T] − [f(X)][f(X)T] ͱఆٛ͢Δɻ ͕༩͑ΒΕͨͱ͖ɺ֬ม ͷฏۉΛ f : ℝN → ℝM f(X) ·ͨࢄڞࢄΛ ͱఆٛ͢Δɻ֬มΛ໌ه͍ͨ͠ͱ͖ ͱॻ͘ɻ X [f(X)]
۩ମྫαϯϓϧͷฏۉ αϯϓϧ Λද֬͢มΛ ͱ͢Δɻ ͦͷؔ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉΛऔΔૢ࡞ Λ xn = {x1
, …, xn } Xn = (X1 , X2 , …, Xn ) f(Xn) [ ⋅ ] ͱදه͢Δɻ ͜ͷฏۉ ΛʮαϯϓϧͷݱΕํʹର͢ΔฏۉʯͱݺͿɻ [ ⋅ ] [f(XN)] = ∫ ∫ ⋯ ∫ f(x1 , …, xn ) n ∏ i=1 q(xi )dxi
۩ମྫਅͷͷฏۉ αϯϓϧͷ֬มΛ Λ༻͍ͯɺ ਅͷ ͷਪଌΛߦͬͨޙɺਅͷͷ֬ม Λൃੜͤͯ͞ ਪଌ݁ՌͷΑ͞ΛධՁ͍ͨ͠ɻ ͜ͷ֬ม ͷؔ ʹ͍ͭͯͷฏۉΛ
Xn = (X1 , X2 , …, Xn ) q(x) X X f(X) ͱදه͢Δɻ [f(X)]X = ∫ f(x)q(x)dx
X X−1 ۭ֬ؒ(Ω = ℝM, ℬ, p) w ∈ Ω
ٯ૾X−1(A) ֬ີؔ ֬ q(x) = p(X−1(x)) Մଌۭؒ(Ω′ = ℝN, ℬ′ ) A ∈ ℬ′ X(w) = X x ∈ Ω′ ֬Q(A) = ∫ A q(x)dx f(x) ฏۉ[f(X)] ≡ ∫ f(x)q(x)dx = ∫ f(x)p(X−1(x))dx = ∫ p(w)X(w)dw = ∫ pXdw ֬ม ֬มͱ֬ɺฏۉͷؔ ۭ֬ؒ(Ω′ = ℝN, ℬ′ , q)
ಉ࣌ͱ͖݅֬
ಉ࣌ͱ͖݅ ͭͷ֬ม ͱ ͕͋Δͱ͖ɺͦͷ ͷ͕֬ Ͱ͋Δͱ͖ɺ Λಉ࣌֬ͱ͍͏ɻ X Y (X,
Y) p(x, y) p(x, y) ·ͨ֬ม ͕༩͑ΒΕͨͱ͖ͷ ͷ͖݅֬Λ࣍ͷΑ͏ ʹఆٛ͢Δɻ X Y p(y|x) = p(x, y) p(x) पล֬࣍ͷΑ͏ʹఆٛ͢Δɻ p(x) = ∫ p(x, y)dy p(y) = ∫ p(x, y)dx
ճؼؔ ֬ม ͷ֬ ʹ͍ͭͯߟ͑Δɻ ͷͱ͖ͷ ͷฏۉΛ (X, Y) p(X, Y)
X = x Y ͱॻ͘ɻ͜ͷؔΛ ͔Β ͷճؼؔ ͖݅ظ ͱ͍͏ɻ x y [Y|x] = ∫ yp(y|x)dy ؔΛ ͕༩͑ΒΕͨͱ͖ͦͷೋޡࠩΛද͢൚ؔΛ y = f(x) [(Y − f(X))2] = ∫ ∫ (y − f(x))2p(y, x)dxdy ͱॻ͘ͱ͜Ε ͷͱ͖ʹ࠷খʹͳΔɻ f(x) = [Y|x]
ΧϧόοΫɾϥΠϒϥใྔ
ΧϧόοΫɾϥΠϒϥใྔ ্ʹೋͭͷ֬ ͕͋Δͱ͖ ℝN q(x), p(x) D(p∥q) = ∫
q(x)log q(x) p(x) dx ͷ͜ͱΛΧϧόοΫɾϥΠϒϥใྔ͋Δ͍૬ରΤϯτϩϐʔͱݺͿ ΧϧόοΫɾϥΠϒϥใྔ͕࣍Γཱͭɻ ʹ͍ͭͯ Ͱ͋Δɻ ͱͳΔͷ ͷͱ͖ʹݶΔɻ ∀q(x), p(x) D(q∥p) ≥ 0 D(q∥p) = 0 q(x) = p(x)
ΧϧόοΫɾϥΠϒϥใྔ ূ໌ ͱ͓͘ͱɺ Ͱ͋Γɺ F(t) = 0 ⇔ t
= 0 F(t) = t + et − 1 (−∞ < t < ∞) ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ ∫ q(x)dx = 1 ∫ p(x)dx = 1 ∫ log q(x) p(x) dx = 0 ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e D(p∥q) ≃ ∫ q(x)(log q(x) − log p(x))2dx ͕Γཱͭɻ
ۃݶఆཧ
֬มͷऩଋ
֬ऩଋ ֬ม ͕ఆ ʹ֬ऩଋ͢Δͱ ʹର͠ɺ ʹ͓͍ͯ {Xn }n∈ℕ c ∀ϵ,
∀δ > 0 ∃N ∈ ℕ n > N ⇒ P(∥Xn − c∥ > ϵ) < δ ⇔ P(∥Xn − c∥ < ϵ) = 1 ͱͳΔ͜ͱͰ͋Δɻ ͜Εେͷऑ๏ଇʹରԠ͍ͯ͠Δɻ Xn c ϵ ඪຊ͕ेʹେ͖͍ͱ͖ɺඪຊฏۉฏۉʹऩଋ͢Δ
๏ଇ ऩଋ ֬มͷྻ ͕֬ม ʹ๏ଇ ऩଋ͢Δͱ ͷ͕֬ Ͱ
ͷ͕֬ Ͱ͋Δͱ͖ɺ ҙͷ༗ք͔ͭ࿈ଓͳؔ ʹରͯ͠ {Xn }n∈ℕ X Xn qn (x) X q(x) F(x) lim n→∞ ∫ F(x)qn (x)dx = ∫ F(x)q(x)dx ⇔ lim n→∞ [F(Xn )] = [F(X)] ͕Γཱͭ͜ͱͰ͋Δɻ͜Εத৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ ඪຊ͕ेʹେ͖͍ͱ͖ɺूஂͷʹؔΘΒͣඪຊฏۉͱฏۉͷࠩਖ਼نʹै͏
ܦݧաఔ
ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ ϢʔΫϦουۭؒ ͷ෦ू߹ ͕։ू߹ͷ ʹ ͍ͭͯ ͳΒɺͦͷ༗ݶݸͷ։ू߹ Ͱ ℝN W
= {O}λ∈Λ W ⊂ ⋃ λ∈Λ Oλ O1 , …, On ∈ ͱͳΔͷ͕͋Δͱ͖ɺ ίϯύΫτͰ͋Δͱ͍͏ W ⊂ O1 ∪ … ∪ On W O1 , …, On ∈ W
্ۭؔؒͷେͷ๏ଇ ϢʔΫϦουۭؒ ʹΛऔΔ ͕֬ม ͱ ಉ֬͡ʹै͏ͱ͢Δɻ ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ ℝN X1
, X2 , …, Xn X w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1 X [ sup w∈W |f(X, w)|] < ∞, X [ sup w∈W |∇w f(X, w)|] < ∞ ݅ ͕ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ ∀ϵ > 0 P( sup w∈W 1 n n ∑ i=1 f(Xi , w) − X [f(X, w)] < ϵ) = 1 ͜ͷ͜ͱΛ্ۭؔؒͷେͷ๏ଇͱ͍͏
ਖ਼ن֬աఔ ू߹ ্ͷؔͰ֬తʹมಈ͢Δͷ ͕ɺ ฏۉؔ ͱ૬ؔؔ Λ࣋ͭਖ਼ن֬աఔͰ͋Δͱɺ ֤ ͝ͱʹ ͕ਖ਼نʹै͏֬มͰ͋Γɺ
W ξ(w) m(w) ρ(w, w′ ) w ξ(w) m(w) = ξ [ξ(w)], ρ(w, w′ ) = ξ [ξ(w)ξ(w′ )] ͕Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ɺ֬աఔ ʹ͍ͭͯͷฏۉΛ ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬աఔɺ ξ [ ⋅ ] ξ ฏۉؔͱ૬͕ܾؔؔ·ΔͱҰҙʹఆ·Δ͜ͱ͕ΒΕ͍ͯΔɻ
ܦݧաఔ ͭ͗ʹ X[ sup w∈W |f(X, w) − X
[f(X, w)]|α ] < ∞ X[ sup w∈W |∇w (f(X, w) − X [f(X, w)])|α ] < ∞ ͕ ͰΓཱͭͱԾఆ͢Δɻ α = 2 Yn (w) = 1 n n ∑ i=1 (f(Xi , w) − X [f(X, w)]) ͜ͷ֬աఔ Λܦݧաఔͱ͍͏ɻ Yn (w)
ܦݧաఔ ֬աఔ ܦݧաఔ ฏۉ͕ Ͱ૬͕ؔؔ Yn (w) 0
ͷਖ਼ن֬աఔ ʹ๏ଇऩଋ͢Δɻ Y(w) ρ(w, w′ ) = X [f(X, w)f(X, w′ )] − X [f(X, w)]X [f(X, w′ )]
֬աఔͷ๏ଇऩଋ ֬աఔ ܦݧաఔ ͕֬աఔ ʹ๏ଇऩଋ͢Δͱɺ ༗ք࿈ଓͳ൚ؔ ʹ͍ͭͯ Yn (w)
Y(w) F( ⋅ ) ͕Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ ͕࿈ଓͰ͋Δͱ F( ⋅ ) lim n→∞ [F(Yn )] = Y [F(Y)] lim n→∞ sup w∈W |fn (w) − f(w)| → 0 ⇒ lim n→∞ F(fn ) = F(f ) ͕Γཱͭ͜ͱͰ͋Δɻ ͜ͷΑ͏ͳܗͷఆཧΛ্ۭؔؒͷத৺ۃݶఆཧͱ͍͏ɻ
ࢀߟࢿྉ w ֬ೖ ล w ܦݧաఔͱ ล w ϕΠζ౷ܭͷཧͱํ๏ ล
w ଌɾ֬ɾϧϕʔάੵ ݪܒհ