Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GitHubを使わずDatabricksだけで お手軽にライブラリ共有やCIが できる環境を作...
Search
kakehashi
April 09, 2024
Business
1
540
GitHubを使わずDatabricksだけで お手軽にライブラリ共有やCIが できる環境を作ってみた/Creating an Environment for Easy Library Sharing and CI Using Only Databricks Without GitHub
kakehashi
April 09, 2024
Tweet
Share
More Decks by kakehashi
See All by kakehashi
Evolving DevOps Teams and Flexible Organizational Culture
kakehashi
1
260
難しいから面白い!医薬品×在庫管理ドメインの複雑性と向き合い、プロダクトの成長を支えるための取り組み / Initiatives to Support Product Growth
kakehashi
2
190
日本の医療システムの再構築を目指すスタートアップ「カケハシ」のフロントエンド領域でのチャレンジ / Challenges in the frontend domain at “Kakehashi”
kakehashi
3
2k
そのデータ連携、ホントにそれでいいの? 〜データモデル分析の重要性を説く〜 / How to analyse data integration
kakehashi
2
160
プロポーザル出しまくり芸人が教える、プロポーザルを採択してもらう技術 / Techniques for Getting Proposal Accepted
kakehashi
7
8.6k
目標設定は好きですか? アジャイルとともに目標と向き合い続ける方法 / Do you like target Management?
kakehashi
13
4.7k
Our Scrum without Estimates, and into the Trunk-based Development
kakehashi
2
440
なぜ僕たちは 開発生産性指標を見ていないのか / Our Strategy for Development Productivity Metrics
kakehashi
18
6.2k
プロダクト拡大フェーズでプロダクト検証サイクル効率化を目指す過程で見えたもの / Streamlining Product Validation in Growth Phase
kakehashi
6
12k
Other Decks in Business
See All in Business
「目標」に対するマインドチェンジ~評価指標から周囲への還元に考えが変わるまで~ / Scrum Fest Sendai 2024
ikuwa0720
0
310
Culture Deck(2024 Sep)
todoker
0
130
株式会社CyberOwl_エンジニア向け会社紹介資料
cyberowl
0
310
会社資料
kanno
0
330
ラピュタロボティクス会社紹介資料
rapyutarobotics
0
31k
人事図書館ラーニングバー_人事としての学びとその活かし方_ねこやなぎのケース20240831
nekoyanagi
1
460
株式会社イードア会社説明資料
sredoa
1
300
株式会社スピークバディ 会社紹介資料
speakbuddy
1
210k
会社概要資料_240820.pdf
fint_recruit
0
370
AI検索エンジンとは?おすすめの9個のAI検索ツールと活用ガイド(特徴・メリット・デメリット・仕組みを徹底解説!)(スライド版)
itarutomy
1
140
VISASQ: ABOUT DEV TEAM
eikohashiba
2
19k
Recruit deck
hokan
1
410
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
190
16k
Thoughts on Productivity
jonyablonski
66
4.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
263
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
8.9k
The Mythical Team-Month
searls
218
43k
Into the Great Unknown - MozCon
thekraken
29
1.4k
Making Projects Easy
brettharned
113
5.8k
We Have a Design System, Now What?
morganepeng
48
7.1k
Designing for Performance
lara
604
68k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
36
2k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.4k
Web development in the modern age
philhawksworth
204
10k
Transcript
日本の医療体験を、しなやかに。 © KAKEHASHI Inc. 株式会社カケハシ 2024/4/5 データサイエンティスト 保坂 GitHubを使わずDatabricksだけで お手軽にライブラリ共有やCIが
できる環境を作ってみた
© KAKEHASHI Inc. 保坂 桂佑 株式会社カケハシ AI在庫管理 データサイエンティスト 兼 エンジニア
経歴 データ分析のコンサルティング →リクルートでデータサイエンティスト→機械学習エンジニアマネージャー →カケハシに1人目のデータサイエンティストとしてジョイン 著書 Kaggleで勝つデータ分析の技術(共著) 自己紹介 2
© KAKEHASHI Inc. カケハシでのお仕事 開発業務からデータサイエンス業務にシフトしてきています 2021年 Musubi AI在庫管理の開発 (エンジニア的なお仕事) 2022年
Musubi AI在庫管理の開発 + 精度改善 (データサイエンティスト的なお仕事 + エンジニア的なお仕事) 2023年〜 新規事業のためのデータ活用、施策効果検証 (データサイエンティスト的なお仕事) 3
© KAKEHASHI Inc. カケハシの分析業務でのDatabricks利用 必要なものがシームレスにつながっていてDatabricksだけで完結できるので、カケハシの分析業務では Databricksをフル活用している 4 可視化・共有 分析 集計・マート作成
定期実行
© KAKEHASHI Inc. 分析業務でよく発生する課題3兄弟 コード共有したい 5 だれでも自由に処理を拡張したい デグレが起こらないようにしたい その分析でも使え るからあげる!
関数追加したい バグってるから 直しちゃう 関数にパラメー タ追加しよう 機能追加した! 間違った結果が 出てるよ チームで分析業務を進めているとこの3つがとても良く起こる。手軽に実現したい・・・ (※現在 データサイエンス系人材 11名ほどの組織規模)
© KAKEHASHI Inc. Databricksにおけるコード管理のベストプラクティス そういうとき、DatabricksではGit/GitHubを使ったコード管理を推奨している • バージョン管理のためにGit/GitHubを使う • GitHub ActionsなどのCI/CDツールでテストをトリガーする
• DatabricksとGit/GitHubを連携させる 6 ノートブックのためのソフトウェアエンジニアリングのベストプラクティス より GitHub Databricks Pull Request GitHub Actions コード 修正 push PR作成 CI実行
© KAKEHASHI Inc. プラクティス通りにやると大変だった アウトプットではなく仮説検証のコードなのできっちりしすぎなくてよいのに、労力に見合わない • 「この集計でXがわかったので別の集計をしてみよう」→「Yがわかったからさらに別の集計をしてみ よう」→「Zだと・・じゃあこのアルゴリズムで行こう」 • 「この検証の流れがほかにも転用できるかもしれないから共有はしておこう」
7
© KAKEHASHI Inc. 大変だった理由① ビジネスサイドに近い業務経験でGitHubに触れたことのないデータサイエンティストにとってGitHubはハー ドルが高い • branch、commit、push、pullなど様々な独自の概念があってなかなか慣れず、エンジニアに質問しま くってしまう •
操作をミスしたときのリカバリは周りにエンジニアがいないと厳しい 8
© KAKEHASHI Inc. 大変だった理由② CIのためにGitHub Actionsのymlファイルを書くのもかなり辛い • 書いてあること一つ一つが謎でどう書いたら良いかわからない • マウスでポチポチするだけでCI作りたい
9
© KAKEHASHI Inc. 大変だった理由③ カケハシではGitHubリソースもIaC管理しているのでさらに敷居が高く、GitHubリポジトリ管理したくない • GitHubリポジトリ作成から権限管理まですべてTerraformコードの修正が必要 • エンジニアからすると嬉しいことだがデータサイエンティストにとっては知らないことばかり 10
© KAKEHASHI Inc. 本当にGitHubで管理しないとだめかな・・ 11
© KAKEHASHI Inc. GitHubの恩恵 GitHubでコード管理すると以下のような恩恵がえられるが・・・ • コードのバージョン管理ができる • Pull Requestによりレビューできる
• コードのロールバックができる • CI/CDにより自動テストができる 12
© KAKEHASHI Inc. Databricksでも代替できるかも! 調べてみるとGitHubが提供する機能の多くをDatabricksだけでもカバーできそうだった (制限はある) 13 PRはないけど コードにコメントつけてFBすることはできる! ブランチはないけどバージョン管理できる!
push/PRをトリガーにはできないけど スケジュールジョブで定期自動テストはできる! 一部コミットのrevertはできないけど 過去バージョンへのロールバックはできる!
© KAKEHASHI Inc. Databricksでも代替できるかも! 調べてみるとGitHubが提供する機能の多くをDatabricksだけでもカバーできそうだった (制限はある) 14 PRはないけど コードにコメントつけてFBすることはできる! ブランチはないけどバージョン管理できる!
push/PRをトリガーにはできないけど スケジュールジョブで定期自動テストはできる! 一部コミットのrevertはできないけど 過去バージョンへのロールバックはできる! データサイエンティスト的には これで十分!
© KAKEHASHI Inc. ということで、GitHubなしでやってみた! 15
© KAKEHASHI Inc. 作った環境 Databricksの機能のみをつかって • コード共有したい • だれでも自由に処理を拡張したい •
デグレが起こらないようにしたい を実現する環境になっている 16 詳細は 弊社ブログ記事 をご覧ください
© KAKEHASHI Inc. 導入してよかったこと この仕組みで、分析業務でよく発生する課題3兄弟は解消できそう。特に以下の点は良いと感じた (※一部のプロジェクトに導入し始めている状況での感想です) マウスでポチポチするだけでCI環境をつくれる • GitHub使ったり、 GitHub
Actionsのyml書く必要がないのでかなりハードルが下がる PRを出す必要なくコード修正が可能なのはやっぱり楽 • ちょっとした変更にPR作って出したりレビューするのもデータサイエンティストにとっては結構負担 リグレッションテスト程度ならすぐ作れるので負担は小さい • 分析作業の中で、処理途中のデータをチェックしてるのでそれをテストにするだけ • おかしな修正があれば過去バージョンに戻せるので怖くない 17
© KAKEHASHI Inc. この仕組みで難しいと感じたこと 手軽さを取る代わりに捨てたものもあるので、難しいと感じた点もあった。データサイエンティストにとっ てもGitHubが必要な場面はありそう。 たくさん変更するときは不安が残る • ブランチは使えないし、差分の全revertはできても一部の差分のrevertはできない ノートブック以外のリソース(クエリなど)はこの仕組みでは管理できない
• 自動テストをさせることはできる • 変更履歴が見られずロールバックができない 18
© KAKEHASHI Inc. 今後やっていこうとしていること プロジェクトや作成したコードのフェーズに合わせた管理ができるようにしていきたい 19 初期フェーズ 試行錯誤・共有フェーズ 安定フェーズ Databricks
only CIもなし Databricks only CIあり Databricks + GitHub 新規のデータや分析なので 共有・再利用難しい お互いのコードが再利用できるときがある が、分析が整理されきっていない 分析が整理・型化されてきて、 その再利用、拡張を行っていく
© KAKEHASHI Inc. まとめ 20 Databricksだけで簡易なライブラリ共有やCIの環境を作った背景、導入してみてのメリットデメリットをご 紹介 • GitHubに触れたことのないデータサイエンティストでも、分析のコード共有に適した手軽さで使える •
リグレッションテストをしたり、テスト失敗時に元のコードにrevertするといった簡単なデグレ防止 には十分使える • たくさんの変更をちゃんと管理したり、ノートブック以外のリソース(クエリなど)を管理したいなら GitHubが不可欠
© KAKEHASHI Inc. なにはともあれ 21 Databricksはデータ関連の機能が オールインワンに搭載されていて 直感的に使えるので、 どんどん使ってみてください!