Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
kurashiruにおけるSageMakerの活用
Search
RytaroTsuji
October 15, 2018
Technology
1
240
kurashiruにおけるSageMakerの活用
aws loft ML night 2018/10/9
RytaroTsuji
October 15, 2018
Tweet
Share
More Decks by RytaroTsuji
See All by RytaroTsuji
Enterprise Generative AI on CloudNative
kametaro
0
220
2020_IR_Reading_dely_tsuji.pdf
kametaro
0
88
Other Decks in Technology
See All in Technology
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
200
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
730
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
330
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
280
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
520
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
330
Featured
See All Featured
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
55
Discover your Explorer Soul
emna__ayadi
2
1.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
GraphQLとの向き合い方2022年版
quramy
50
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
We Are The Robots
honzajavorek
0
170
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Technical Leadership for Architectural Decision Making
baasie
2
250
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
What's in a price? How to price your products and services
michaelherold
247
13k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Transcript
A m a z o n S a g e
M a k e r ͷ ׆ ༻ ࣄ ྫ
ձ ࣾ ɾαʔϏε հ • delyגࣜձࣾ • 20144݄ۀ • ࣾһ70ਓɺैۀһ130ਓ
• kurashiru (Ϋ ϥ γϧ ) • 20162݄ ɺα ʔ Ϗ ε ։࢝ • 20165݄ ɺΞ ϓ Ϧ Ϧ Ϧ ʔε • 20174݄ɺશࠃTVCM์ૹ։࢝ • 201712݄ɺྦྷܭ1000ສDLಥഁ
ࣗ ݾ հ • ⁋ོଠ(@kametaro) github/twitter • dely גࣜձࣾ
• ։ൃ෦ΤϯδχΞɾػցֶश୲ • झຯ • ʢପԁۂઢͱอܕܗࣜͷษڧதʣ • ུྺ • ڈ·ͰΞϓϦˍαʔόʔαΠυͷΤϯδχΞΛϝΠϯͰͬͯ·ͨ͠ɻػցֶश ΤϯδχΞͱͯ͠·ͩ·ͩϖʔϖʔͰ͢ɻ
ϨγϐఏҊʹ๊͓͍͍ͯ͑ͯͨ՝ 1Ґ 2Ґ 3Ґ 4Ґ 5Ґ 6Ґ શϢʔβʔʹڞ௨ͷϨγϐ܈Λදࣔ ਓͦΕͧΕͷΈʹ߹ͬͨϨγϐఏҊ͕Ͱ͖͍ͯͳ͍
ཧͷϨγϐఏҊ ਓͦΕͧΕͷΈʹج͍ͮͯύʔιφϥΠζ͞ΕͨఏҊ 1Ґ 2Ґ 3Ґ 1Ґ 2Ґ 3Ґ 1Ґ 2Ґ
3Ґ
Amazon SageMaker ͷಋೖΛܾఆ • ཧͷϨγϐఏҊΛ࣮ݱ͢Δʹػցֶशٕज़͕ඞਢ • ػցֶशΤϯδχΞ1໊ͷΈɺͰ࠷ͰϦϦʔε͍ͨ͠ • SageMakerϑϧϚωʔδυͳػցֶशαʔϏε •
ϞσϧߏஙɺτϨʔχϯάɺσϓϩΠ·ͰΛҰؾ௨؏ͰରԠ • ։ൃணख͔Β1.5ϲ݄ͰProductionڥͷөʹޭ
࣮ ̍ ɿ Ϋ ϥ ε λ Ϧ ϯ
ά Ϣʔ β ʔ ૉੑ • ͓ ؾ ʹ ೖ Γ / ݕࡧճ • ࢹௌճ/ ࢹ ௌ ࣌ ؒ • ϩ άΠ ϯ ༗ແ • ฏ/ ٳͷ ىಈճ • ேனͷ ىಈճ etc… Ϩ γ ϐ ૉੑ • Χ ς ΰ Ϧ ɺ ༸ த • ०ͳ৯ࡐ • ௐཧ࣌ؒɺ৯ࡐ • Χ ϩ Ϧ ʔ ɺ Ԙ ྔ • ਏ ͍ ɾ ͍ etc… Ϣ ʔ β ʔ ͓ Α ͼ Ϩ γ ϐ ͷ ಛ ྔ Λ ந ग़ ͯ͠ Ϋ ϥε λ Ϧϯ ά
࣮̎ɿڠௐϑ Ο ϧ λ Ϧ ϯ ά ڠௐϑ Ο ϧ
λ Ϧ ϯ ά 1. ࣗʹࣅ͍ͯΔਓͷΈͱ ࣗ ͷΈࣅ͍ͯΔͣʂ 2. ࣗ ʹࣅ ͍ͯΔਓ ͕ ΜͩϨγϐ ࣗ ͕ · ͩ ݟ ͨ ͜ͱͳ ͯ͘ ͖ ͳ ͣ ʂ ֤ Ϣ ʔ β ʔ Ϋ ϥ ε λ ͕ Ή Ͱ ͋ Ζ ͏ Ϩ γ ϐ Λ ਪ ʹ Α ΓϨ ʔ ς Ο ϯ ά Λ औ ಘ ɺίϯ ς ϯ π ϓʔϧ ʹ ֨ ೲ
࣮ ̏ɿίϯ ς ϯ π ϓʔϧ ͷ ࠷ ద
Խ ࣌ؒܦա܁Γฦ͠ࢹௌʹ ΑΓί ϯ ς ϯ π ຏ ͠ ͯ ͍ ͘ ↓ ಉ ͡ Ϋ ϥε λ ͷ ະ ࢹ ௌ Ϩ γ ϐ ʹ ೖ Ε ସ ͑ ͯ ɺ ί ϯ ς ϯ π ϓʔ ϧ Λ Ϧ ϑ Ϩ ο γ ϡ
Ϩ γ ϐ ఏ Ҋ · Ͱ ͷ σ ʔ
λ ͷ ྲྀ Ε
Ϩ γ ϐ ఏ Ҋ · Ͱ ͷ σ ʔ
λ ͷ ྲྀ Ε 1. Έ ࠐ Έ ͢ ͘ ɺ Έ ͑ ָ • ֶशίϯςφ͕Γग़ͤΔͷͰɺ δϣϒϑϩʔͷՃฒྻԽ͕ྟ ػԠมʹߦ͑Δ SageMaker
ϩά ऩूج൫ data ETL Machine Learning Service development Container vm(minicube)
[[etl]] ap-northeast-1 us-east-1 ap-northeast-1 Amazon Athena kops kops cronjobs extract transform train predict load [[etl]] Transform train predict load Amazon SageMaker predict endpoint container train job container Predict endpoint container - instance type - instance count train job container - instance type - instance count DynamoDB recommendation RDB recommendation AWS Glue staging production apply staging apply feature input feature CRR CRR apply application endpoint
ϩά ऩूج൫ data ETL Machine Learning Service development Container vm(minicube)
[[etl]] ap-northeast-1 us-east-1 ap-northeast-1 Amazon Athena kops kops cronjobs extract transform train predict load [[etl]] Transform train predict load Amazon SageMaker predict endpoint container train job container Predict endpoint container - instance type - instance count train job container - instance type - instance count DynamoDB recommendation RDB recommendation AWS Glue staging production apply staging apply feature input feature CRR CRR apply application endpoint SageMaker 1. ॊೈͳόονγεςϜ • τϨʔχϯάδϣϒʹ͔͔ΔෛՙΛ ผΠϯελϯεʹҕৡՄೳ • ඇಉظͰδϣϒ࣮ߦՄೳ 2. ࣗ༝ʹΤϯυϙΠϯτԽ • ӬଓԽͨ͠API͔Βਪ݁ՌΛฦ٫ • Φʔτεέʔϧػೳ͋Γ
Amazon SageMakerͷ׆༻ • ੳʢϊʔτϒοΫΠϯελϯεʣ • ֶशͱਪʢΞϧΰϦζϜɾίϯςφʣ ͜ΕΒͷओʹͭ·͍ͣͨΛհ
ੳᶃ ϊʔτϒοΫΠϯελϯε ‣ Jupyter NotebookͷΠϯελϯεΛ؆୯ʹىಈͰ͖Δɻ ‣ ΠϯελϯεαΠζΛ࡞ޙʹมߋՄೳɻ
ੳᶄ ϥΠϑαΠΫϧઃఆ #!/bin/bash set -e sudo yum install -y gcc72
gcc72-c++ echo ". /home/ec2-user/anaconda3/etc/profile.d/ conda.sh" >> ~/.bashrc source ~/.bashrc conda activate python3 pip install --upgrade pip pip install sshtunnel --no-warn-conflicts pip install pymysql --no-warn-conflicts pip install gensim --no-warn-conflicts pip install msgpack --no-warn-conflicts pip install janome --no-warn-conflicts pip install jupyter-emacskeys --no-warn-conflicts pip install fasttext --no-warn-conflicts ϊʔτϒοΫΠϯελϯεىಈޙʹ ඞཁͳϥΠϒϥϦͷΠϯετʔϧͳͲ Λࡁ·ͤΔɻ Lifecycle configurations ex)
ੳᶅ • ϊʔτϒοΫͰͭ·͍ͮͨͱ͜Ζ ϊʔτϒοΫͷىಈʹࣦഊ͢Δͱίϯιʔϧը໘͔ΒىಈͰ͖ͳ͘ͳΔɻ ϥΠϑαΠΫϧઃఆͷpip install͕҆ఆ͠ͳ͍ɻ ‣ ϥΠϑαΠΫϧઃఆͰίέΔ ‣ େ͖ͳϑΝΠϧΛuploadͯ͠ΠϯελϯεͷσΟεΫ༰ྔ͕͍ͬͺ͍
‣ sagemakerͷpython packageͱpipͷىಈλΠϛϯά͕όοςΟϯά͢Δͱى͜Δɻ ✓pip install numpy —no-warn-conflicts # ͜ͷΦϓγϣϯΛ͚Δ ‣ ͜ͷΑ͏ʹԿૢ࡞Ͱ͖ͳ͘ͳΔ ✓awscli͔Βىಈ͢Δ # aws sagemaker start-notebook-instance --notebook-instance-name my_note
ֶशͱਪᶃ • Built-InΞϧΰϦζϜ k-means PCA LDA Factorization Machines Linear Learner
Neural Topic Model Random Cut Forest Seq2Seq Modeling XGBoost Object Detection Image Classification DeepAR Forecasting BlazingText k-nearest-neighbor (k-NN) ‣ Factorization Machines => Ϩίϝϯυ ‣ XGBoost => ଞΫϥεྨ ‣ Image Classification => αϜωΠϧը૾ྨ ‣ k-means => ΫϥελϦϯά
ֶशͱਪᶄ • Factorization MachinesͰͭ·͍ͣͨͱ͜Ζ ՝ɿnumpyͰѻ͏ʹେ͖͗͢ΔτϨʔχϯάσʔληοτ
ֶशͱਪᶄ • Factorization MachinesͰͭ·͍ͣͨͱ͜Ζ ରࡦɿscipy.sparse.lil_matrixʹΑΔεύʔεߦྻͷੜ͢Δ େ͖ͳεύʔεߦྻΛ̍ͰຒΊ͍ͯ͘
ֶशͱਪᶄ • Factorization MachinesͰͭ·͍ͣͨͱ͜Ζ ՝ɾରࡦɿਪྔ͕ଟ͍numpy:1ߦ -> scr:10000ߦʢ16࣌ؒ -> 20ʣ Compressed
Sparse Row matrix ʹѹॖ csrߦྻ͕ࢦఆͰ͖Δ ※) Batch transform job ʹमਖ਼த
ֶशͱਪᶅ • XGBoostͰͭ·͍ͣͨͱ͜Ζ ՝ɿϋΠύʔύϥϝλௐδϣϒͬͯͲ͏ͬͯ͏ͷʁ
ֶशͱਪᶅ • XGBoostͰͭ·͍ͣͨͱ͜Ζ ରࡦɿϋΠύʔύϥϝλௐδϣϒͷҾʹrangesύϥϝλΛ͢
ֶशͱਪᶅ • XGBoostͰͭ·͍ͣͨͱ͜Ζ ରࡦɿϋΠύʔύϥϝλௐδϣϒͷ࣮ߦ
ֶशͱਪᶅ • XGBoostͰͭ·͍ͣͨͱ͜Ζ ରࡦɿϋΠύʔύϥϝλௐδϣϒΛίϯιʔϧͰ֬ೝ validation:auc
ֶशͱਪᶆ • Image ClassificationͰͭ·͍ͣͨͱ͜Ζ ՝: τϨʔχϯάσʔληοτͬͯͲ͏ͬͯ༻ҙ͢Δͷʁ MXNetͷrecϑΝΠϧΛࢦఆ͢Δ
ֶशͱਪᶆ • Image ClassificationͰͭ·͍ͣͨͱ͜Ζ ରࡦɿMXNetͷlstϑΝΠϧͱrecϑΝΠϧͷ࡞ MXNET_HOME = ‘~/incubator-mxnet/' RESOURCE_DIR =
‘~/thumbnails/' os.system('python {0}/tools/im2rec.py --list --recursive --train-ratio 0.8 --test-ratio 0.2 {1}/im2rec/target {1}'.format(MXNET_HOME, RESOURCE_DIR)) os.system('python {0}/tools/im2rec.py --resize 480 --quality 95 --num-thread 64 {1}/im2rec/train {1}'.format(MXNET_HOME, RESOURCE_DIR)) os.system('python {0}/tools/im2rec.py --resize 480 --quality 95 --num-thread 64 {1}/im2rec/test {1}'.format(MXNET_HOME, RESOURCE_DIR)) 1.https://github.com/apache/incubator-mxnet.git 2.ֶश͢ΔαϜωΠϧը૾ΛPCʹμϯϩʔυ 3.࡞ͨ͠recϑΝΠϧΛS3ͷॴఆͷॴʹΞοϓϩʔυ
ֶशͱਪᶇ • k-meansͰͭ·͍ͣͨͱ͜Ζ ՝ɾରࡦɿkΫϥελʔͷ࠷దͲ͏ͬͯௐΔͷʁ͜Εʹؔͯ͠ϋΠύʔύϥ ϝλௐδϣϒͰݱ࣌ͰͰ͖ͳ͍ͷͰҎԼͷํ๏ͰಓʹௐΔɻ ΤϧϘʔ๏ γϧΤοτੳ
ETLɾֶशόονγεςϜ • Kubernetes(kops)Λج൫ʹબͨ͠ཧ༝ step functionsʗAWS BatchͰɺδϣϒͱδϣϒϑϩʔΛҰॹʹཧͰ͖ͳ͍ɻ εέδϡʔϥʔ͕cronjobs͚ͩͰγϯϓϧʹཧͰ͖ɺίϚϯυͰ؆୯ʹมߋͰ͖Δɻ ΦϯϥΠϯֶशͰBatchͱAPIΛ࿈ܞ͢Δඞཁ͕͋ͬͨɻ কདྷతʹEKSʢ౦ژϦʔδϣϯʣͰཧͰ͖Δɻ step
functionsAWS Batch෦తʹ༻Մೳɻ SageMakerͰֶश͕ίϯςφʹΓͤΔͷͰɺόονγεςϜͷઃܭ͕ॊೈʹߦ ͑Δɻ
SageMakerΛ̑ϲ݄ͬͯΈͨײ • ੳʢϊʔτϒοΫΠϯελϯεʣ ϥΠϑαΠΫϧઃఆ͕ศརʗ͓खܰʹڥΛηοτΞοϓͰ͖Δ ͪΐͬͱॲཧ͕ॏ͘ͳͬͨͱࢥͬͨΒɺ͋ͱ͔ΒΠϯελϯελΠϓΛมߋՄೳ • ֶशͱਪʢΞϧΰϦζϜɾίϯςφʣ Built-inΞϧΰϦζϜɺTensorflowʗChainerͳͲਂֶशϑϨʔϜϫʔΫॆ࣮ ֶशίϯςφ͕Γ͞ΕΔͷͰɺ࣮ߦதͷδϣϒϦιʔεΛؾʹ͠ͳͯ͘ࡁΉ ϊʔτϒοΫΛෳਓͰར༻Ͱ͖Δ
ϞσϧΛ؆୯ʹΤϯυϙΠϯτͱͯ͠σϓϩΠͰ͖ɺΦʔτεέʔϧՄೳ ϋΠύʔύϥϝλௐδϣϒΛͬͯɺҰ൪ྑ͍ϋΠύʔύϥϝλΛࣗಈઃఆͰ͖Δ
ࠓޙͷల • ৯ࡐͷ ༨Γ ͢ ͞ Λ ߟྀ͠ ͨ
Ϩ γ ϐ ఏҊ 1. աڈʹ ࢹௌ͠ ͨ Ϩ γ ϐ ͷ தͰ ༨Γ ͢ ͍ ৯ࡐΛ ผ 2. ͦ ͷ ৯ࡐΛ ޮΑ ͘ ফඅͰ ͖ Δ Ϩ γ ϐ Λ ఏҊ • ύʔιφϥΠζͨ͠ϨγϐͷఏҊ 1. ʰ ਏ ͍ ʗ ͍ ʱ ɺ ʰ ͜ ͬ ͯ Γ ʗ ͞ ͬ ͺ Γ ʱ ͳ Ͳ ɺ Α Γ Ϣ ʔ β ͷ Έ ϥ Π ϑ ε λ Π ϧ ʹ ߹ ͬ ͨ Ϩ γ ϐ ͷ ఏ Ҋ 2. ༨ ͬ ͨ ৯ ࡐ ʹ ͪ ΐ ͍ ͠ ͠ ͯ Ͱ ͖ Δ Ϩ γ ϐ ͷ ఏ Ҋ
delyͰػցֶशΤϯδχΞΛืू͍ͯ͠·͢ʂ • ΫϥγϧγΣϑ͕࡞ͬͨϨγϐຊʹඒຯ͍͠ΜͰ͢Αɻ ඒ ຯ ͠ ͦ ͏ ͳ ͷ
ݟ ͨ ͩ ͚ ͳ Μ Ͱ ͠ ΐ ͏ ʁ ͍ ͍ ɺ ͦ Μ ͳ ͜ ͱ ͳ ͍ Μ Ͱ ͢ɻ ຯ Θ ͬ ͯ Έ Δ ͭ ͍ Ͱ ʹ ػ ց ֶ श Γ ͨ ͍ ͱ ͍ ͏ ํ ͥ ͻ ͓ ͪ ͠ ͯ ͓ Γ · ͢ ʂ • ػցֶशʹؔ࿈͢Δ͜ͱશ෦ܦݧͰ͖·͢ɻ ͍ · ͷ ͱ ͜ Ζ σ ʔ λ ੳ ɺ α ʔ Ϗ ε ఏ ڙ ɺ ֶ श Ξ ϧ ΰ Ϧ ζ Ϝ બ ఆ ɺ ج ൫ ߏ ங ɾ ӡ ༻ · Ͱ શ ෦ Ұ ਓ Ͱ ͬ ͯ · ͢ɻ গ ͠ େ ͖ ͍ ن ͷ ৫ ͩ ͱ ෳ ਓ Ͱ Δ Α ͏ ͳ ͜ ͱ Λ ڽ ॖ ͠ ͯ ܦ ݧ Ͱ ͖ · ͢ ʂ