= task.fit(dataset, epochs=5, ngpus_per_trial=1, verbose=False) print('Top-1 val acc: %.3f' % classifier.results['best_reward']) # predict # skip this if training FashionMNIST on CPU. if ag.get_gpu_count() > 0: image = 'data/test/BabyShirt/BabyShirt_323.jpg' ind, prob, _ = classifier.predict(image, plot=True) print('The input picture is classified as [%s], with probability %.2f.' % (dataset.init().classes[ind.asscalar()], prob.asscalar())) image = 'data/test/womenchiffontop/womenchiffontop_184.jpg' ind, prob, _ = classifier.predict(image, plot=True) print('The input picture is classified as [%s], with probability %.2f.' % (dataset.init().classes[ind.asscalar()], prob.asscalar())) ग़యIUUQTBVUPHMVPONYOFUJPUVUPSJBMTJNBHF@DMBTTJpDBUJPOCFHJOOFSIUNM