Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Web 情報からの罹患検出を対象とした事実性解析・主体解析の誤り分析
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
katsutan
March 23, 2017
Technology
0
120
Web 情報からの罹患検出を対象とした事実性解析・主体解析の誤り分析
文献紹介
長岡技術科学大学 自然言語処理研究室
勝田哲弘
katsutan
March 23, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
230
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
300
Other Decks in Technology
See All in Technology
ReproでのicebergのStreaming Writeの検証と実運用にむけた取り組み
joker1007
0
380
コミュニティが持つ「学びと成長の場」としての作用 / RSGT2026
ama_ch
2
450
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
1.3k
たかがボタン、されどボタン ~button要素から深ぼるボタンUIの定義について~ / BuriKaigi 2026
yamanoku
1
290
AIAgentを駆使してSREが貢献する開発体験の向上
yoshiiryo1
4
1.1k
ALB「証明書上限問題」からの脱却
nishiokashinji
0
240
AI時代のPMに求められるのは 「Ops」と「Enablement」
shimotaroo
1
290
エンジニアとマネジメントの距離/Engineering and Management
ikuodanaka
2
200
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
The Engineer with a Three-Year Cycle
e99h2121
0
160
GitHub Copilot CLI 現状確認会議
torumakabe
12
4k
さくらのクラウドでのシークレット管理を考える/tamachi.sre#2
fujiwara3
1
210
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
61
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.9k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
240
The Spectacular Lies of Maps
axbom
PRO
1
450
Building Applications with DynamoDB
mza
96
6.9k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
It's Worth the Effort
3n
188
29k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Transcript
文献紹介: Web 情報からの罹患検出を対象とした 事実性解析・主体解析の誤り分析 叶内 晨, 北川 善彬, 荒牧 英治,岡崎
直観, 小町 守 自然言語処理 Vol. 22 (2015) No. 5 p.363-395 長岡技術科学大学 自然言語処理研究室 学部3年 勝田哲弘 図、表などは論文中から引用しています。 1 2017/3/24
概要 • NLPによるソーシャルリスニングの問題点 ▫ ツイートからインフルエンザや風邪などの疾患・ 症状を認識 • 正例と負例の分類は事実性解析と主体解析をう まく組み合わせると精度を向上させることがで きることが分かった。
2
コーパス • 2008年から2010年にかけてTwitter API を用いて30億発言を収集 • 「インフルエンザ」や「風邪」といったキー ワードを含む発言を抽出 3
コーパス • 負例の判断 ▫ 居住地が正確でない発言 ▫ 24時間以内の疾患についての発言でない ▫ 否定の表現、疑問や不確かな発言 4
コーパス • インフルエンザの具体例 5
分類器の誤り分析 • SVMにて構築し、その誤りを人手で分類 6
分類器の誤り分析 • 事実性(時制、モダリティ、否定) • 主体性(非当事者、一般論) • 比喩 7
事実性解析 事実をもつかもたないかの2値分類 • つつじによる素性 ▫ 同じような意味の機能表現をまとめた • Zundaによる素性 ▫ 仮想性の解析
8
インフルエンザ感染の2値分類 • 評価 ▫ 5分割交差検定 ▫ 適合率、再現率、F1-スコア • ツール ▫
Classias(ver.1.1) ▫ MeCab(ver.0.996)、IPA-Dic(ver.2.7.0) 9
インフルエンザ感染の2値分類 • インフルエンザを中心に前後3つの形態素を Bag of Words(BoW)の素性とし、モダリティ以 外の素性を加えたものをベースラインの分類器 として作成 10
インフルエンザ感染の2値分類 • 結果 11
主体解析 • 疾患・症状毎に500件、合計3000件に誰 が主体になっているかのラベル付けをした 12
主体解析 • ラベルの種類 13
主体解析 • 正負の割合(対象が複数の場合は除く) • 主体が認識できれば 14
主体ラベル推定器 • 「風邪」や「頭痛」などの疾患・症状を保有し ている主体ラベルを推定する • 「物体」「主体なし」については主たる対象で はないので統合する • 分類器にClassias 1.1を使い、L2正則化ロジス
ティック回帰モデルを学習 15
主体ラベル推定器 16
主体ラベル推定器 • 精度 5分割交差検定 17
主体ラベル推定器 18
罹患検出 • 推定した主体ラベル、付与した正解の主体ラベ ルを素性として用いた結果 19
事実性解析と主体解析 • 主体ラベルを推定するときはそれぞれの発言を ランダムに500件抽出し正解ラベルを付与し 学習 • 5分割交差検定 20
事実性解析と主体解析 • 事実性解析はインフルエンザにおいて大幅に上 昇した ▫ 返信先が疾患に罹っている場合や比喩的な問題が あるため風邪では精度が上がらなかった • 事実性と主体を組み合わせると主体問題が多少 解決するため全体的に向上した
21
まとめ • 事実性の解析、状態を保有する主体の判定が罹 患検出に貢献する • 実験によって実際に制度が向上していることを 確認した 22