Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Improving Word Embeddings Using Kernel PCA
Search
katsutan
September 17, 2019
Technology
0
180
Improving Word Embeddings Using Kernel PCA
文献紹介
https://www.aclweb.org/anthology/W19-4323
長岡技術科学大学
勝田 哲弘
katsutan
September 17, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
180
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
160
Simple task-specific bilingual word embeddings
katsutan
0
180
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
200
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
150
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
250
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
220
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
250
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
220
Other Decks in Technology
See All in Technology
Swift Testingのconfirmationを コードリーディング/Dive into Swift Testing confirmation
laprasdrum
1
220
20240912 JJUGナイトセミナー
mii1004
0
130
より快適なエラーログ監視を目指して
leveragestech
4
1.2k
疎通2024
sadnessojisan
5
1k
Optuna: a Black-Box Optimization Framework
pfn
PRO
1
100
ビジネスとエンジニアリングを繋ぐプロダクトを中心とした組織づくりの実践
sansantech
PRO
1
170
音声AIエージェントの世界とRetell AI入門 / Introduction to the World of Voice AI Agents and Retell AI
rkaga
4
890
Tricentisにおけるテスト自動化へのAI活用ご紹介/20240910Shunsuke Katakura
shift_evolve
0
170
AIで変わるテスト自動化:最新ツールの多様なアプローチ/ 20240910 Takahiro Kaneyama
shift_evolve
0
190
手軽に始める? おうちサーバーのすゝめ
nyagasan
0
200
技術ブログや登壇資料を秒で作るコツ伝授します
minorun365
PRO
23
5.4k
contenteditableと向き合う
kikuchikakeru
2
280
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
28
1.6k
How STYLIGHT went responsive
nonsquared
93
5.1k
Into the Great Unknown - MozCon
thekraken
28
1.4k
Become a Pro
speakerdeck
PRO
22
4.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
225
22k
Fireside Chat
paigeccino
31
2.9k
A Modern Web Designer's Workflow
chriscoyier
691
190k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
32k
Typedesign – Prime Four
hannesfritz
39
2.3k
The World Runs on Bad Software
bkeepers
PRO
64
11k
What's new in Ruby 2.0
geeforr
340
31k
A Tale of Four Properties
chriscoyier
155
22k
Transcript
IMPROVING WORD EMBEDDINGS USING KERNEL PCA 文献紹介 長岡技術科学大学 勝田 哲弘
ABSTRACT トレーニング時間を短縮し、パフォーマンスを向上させるために、 morphological information を考慮した埋め込みモデルのための新しいアプローチ 単語類似度行列のカーネル主成分分析(KPCA)で得られる単語のmorphological informationで強化
英語とドイツ語の単語の類似性と類推のタスクでモデルを評価 元のスキップグラムモデルとfastTextモデルよりも高い精度を達成 必要なトレーニングデータと時間も大幅に減少 2
INTRODUCTION Word embeddingでよく用いられる手法 Word2vec-skipgram fastText fastTextはサブワードを考慮することで低頻度語をある程度改善できる
しかし、ニュースなどに出てくる新しい単語などは失敗する場合が多い 語彙が時間の経過で変化するデータセット内でうまく機能するアプローチの 提案 3
KPCA-BASED SKIP-GRAM AND FASTTEXT MODELS 単語類似度行列でKPCAを使用した埋め込み事前学習 語彙内の単語に対して文字列の類似度を計算し類似度行列を生成
単語、サブワード埋め込みをKPCAで初期化 意味的に類似した単語は、 roots, affixes, syllablesなどの一般的な形態素 をしばしば共有する morphologically richな言語で特に役立つ 4
KERNEL PCA ON STRING SIMILARITIES 語彙V内の単語w、文字列の類似度関数S(n-gram similarity)、非線形カーネル関 数K(ガウス)で単語類似度行列を計算
Kの列ベクトルkiはwiの| V |次元表現と見なすことができるため、V次元のwiの 単語の特徴空間表現が得られる PCAによって単語ベクトルを低次元空間に投影 最も高い固有値λ1からλdに対応するd個の固有ベクトルv1からvdを選択 5
MODELS WITH KPCA EMBEDDING 語彙Vを制限して、テキストコーパスの最も頻繁な単語のみを含める Vに含まれない単語snewは、カーネルベクトルを用いて計算 Semanticな情報を考慮するためword2vec、fastTextに組み込む
fastTextではサブワードのベクトル表現も同様に計算して使用 6
EXPERIMENTAL RESULTS -DATASET 様々なサイズのデータセットでトレーニングしたモデルのパフォーマンスを評価 評価 単語とそれらの関係の間のセマンティックおよび構文の類似性の計算を含む単語類推タスク
文分類タスクなどの後続の処理で埋め込みがどの程度機能するか 7
EXPERIMENTAL RESULTS 大きなデータセットで訓練されると、単純なモデルで単語間の非常に微妙な関係に答えることができる 8
EXPERIMENTAL RESULTS 小さなデータセットのみでトレーニングされでも、KPCAで高品質な単語埋め込みを生成可能 9
EVALUATION OF PERFORMANCE ON DOWNSTREAM APPLICATIONS 埋め込みモデルから取得した埋め込みを使用してCNNを初期化、トレーニング中の埋め込み層を固定 10
CONCLUSION KPCAを用いた単語埋め込みの改善手法を提案 KPCAの対象となる小さな語彙から計算された文字列類似度行列に基づいた単語の埋め込みを生成 単語のKPCAベースのベクトル表現をskipgramモデルへの入力として使用して、単語の文脈も考慮し た埋め込みを取得 KPCAを用いることで:
word similarityやword analogyの改善 より少ないデータセット、エポック数でも学習が可能 11