$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Character Eyes: Seeing Language through Charact...
Search
katsutan
October 15, 2019
Technology
1
210
Character Eyes: Seeing Language through Character-Level Taggers
文献紹介
https://www.aclweb.org/anthology/W19-4811.pdf
長岡技術科学大学
自然言語処理研究室
勝田 哲弘
katsutan
October 15, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
260
Other Decks in Technology
See All in Technology
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
820
.NET 10の概要
tomokusaba
0
120
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
400
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
9
380
チーリンについて
hirotomotaguchi
6
2.1k
品質のための共通認識
kakehashi
PRO
4
350
SREには開発組織全体で向き合う
koh_naga
0
370
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
130
RAG/Agent開発のアップデートまとめ
taka0709
0
190
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
360
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
100
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
GitHub's CSS Performance
jonrohan
1032
470k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Side Projects
sachag
455
43k
KATA
mclloyd
PRO
33
15k
Faster Mobile Websites
deanohume
310
31k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Transcript
Character Eyes: Seeing Language through Character-Level Taggers Proceedings of the
Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 95–102 Florence, Italy, August 1, 2019. 長岡技術科学大学 自然言語処理研究室 勝田 哲弘 2019/10/15 文献紹介
Introduction • この論文が注目しているもの • サブワードのベクトル表現 • 文字レベルモデルの利点 • 単語単位では低頻度で学習できない場合も対応できる •
現状 • 言語知識(morphology and orthography)のエンコードを説明できない • Bi-LSTMの文字エンコーダーを分析する 2
Tagging Task • 評価を行うモデルはLSTM tagging models Ling et al. (2015)
• Char-LSTM → Word-Bi-LSTM → two-layer perceptron → softmax • 各単語の隠れ層パーセプトロンに送られてタグスコアを生成 • morphosyntactic attribute tagging Pinter et al. (2017) • 独自のperceptron + softmax scaffoldingを使用 3
Language Selection • 2つの形態学的特性に基づいて言語を選択 • 24のデータセットはすべて、Universal Dependencies (UD) version 2.3
(Nivre et al., 2018)から取得 • 言語特性はWorld Atlas of Language Structures (Bickel and Nichols, 2013; Dryer, 2013) • Affixation. • UDで利用可能なすべての言語を選択 • Suffixing以外も含まれる • Morphological Synthesis 4
Technical Setup • データセット • 複数のtreebankがある言語では最も大きいものを使用 • ‘http’ を含む単語は ‘URL’に置換
• ‘@’を含む単語は ‘EMAIL’に置換 • Hyperparameters • bidirectional character-level LSTM • hidden state: 128, character embedding size: 256 • word-level bidirectional LSTM • 2layers, hidden state 128, dropout 0.5 • MLP • Size: tagset size, 活性化関数: tanh 5
Results • Word embeddingなしで同等の精度 • Char embedが256と大きいことに起因 6
Analysis • モデルの分析 • 言語情報をどのようにエンコードしているのか? • Metrics • 各文字ごとの隠れ層の出力を観察 average
absolute, max absolute 7
Analysis • 相互情報(MI)に基づく language-level metric: PDI • base metricの範囲は同じサイズのB個のビンに分割 •
各単語からのbase activationsはT POSタグカテゴリごとに合計され、正規化されて結合 確率分布が生成される • PDIが高いと異なる単語に対して異なる活性化を行っている • タスクとしては優れた分類器になっている 8
Analysis • 言語は各ユニットに1つずつ dhのPDI scoresを生成 • さらに2つの language-level metricsを定義 •
sum of PDI values: • the relative importance of forward and backward units: 9
PDI Patterns • Introflexive languagesは文字系列からPOSま たはmorphosyntacticを学習することが難しい ため全体的に低い 10
Asymmetric Directionality • LSTMの方向性に関する調査 • 不均衡なモデルは、言語特性と統計メトリック に基づいて言語に異なる影響を与えるという 仮説をテスト • forward
and unitsのサイズを変える • LSTMユニットの隠れ層が最終状態に 近い形態の検出に優れている • 単方向LSTMと双方向LSTMの2つの一般的 な手法の間に実質的な妥協点がない 11
Conclusion • 文字レベルのBi-LSTMモデルは多くの言語で意味のある単語表現を計算 するが、その方法は各言語のtypological propertiesによって異なる • この観察結果は、モデル選択の動機になる • agglutinative languagesは単一方向の分析を強く好む
• 今後、メトリックにさらなる制御を導入する • タグの分布やインスタンスの数などのデータセット属性、および収束率や初期化の効 果などの学習関連のプロパティを組み込む 12