Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Character Eyes: Seeing Language through Charact...
Search
katsutan
October 15, 2019
Technology
1
170
Character Eyes: Seeing Language through Character-Level Taggers
文献紹介
https://www.aclweb.org/anthology/W19-4811.pdf
長岡技術科学大学
自然言語処理研究室
勝田 哲弘
katsutan
October 15, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
190
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
170
Simple task-specific bilingual word embeddings
katsutan
0
190
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
190
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
260
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
240
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
260
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
240
Other Decks in Technology
See All in Technology
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
120
AWSでRAGを実現する上で感じた3つの大事なこと
ymae
3
830
re:Invent Recap (January 2025)
scalefactory
0
340
private spaceについてあれこれ調べてみた
operando
1
220
High Performance PHP
cmuench
0
120
事業継続を支える自動テストの考え方
tsuemura
0
170
トレードオフスライダーにおける品質について考えてみた
suzuki_tada
3
210
Ask! NIKKEIの運用基盤と改善に向けた取り組み / NIKKEI TECH TALK #30
kaitomajima
1
340
もし今からGraphQLを採用するなら
kazukihayase
9
4.5k
サーバーレスアーキテクチャと生成AIの融合 / Serverless Meets Generative AI
_kensh
4
510
ソフトウェア開発現代史:製造業とソフトウェアは本当に共存できていたのか?品質とスピードを問い直す
takabow
15
5.8k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
18k
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
32
6.4k
Code Review Best Practice
trishagee
66
17k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
380
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Writing Fast Ruby
sferik
628
61k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
How GitHub (no longer) Works
holman
313
140k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Transcript
Character Eyes: Seeing Language through Character-Level Taggers Proceedings of the
Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 95–102 Florence, Italy, August 1, 2019. 長岡技術科学大学 自然言語処理研究室 勝田 哲弘 2019/10/15 文献紹介
Introduction • この論文が注目しているもの • サブワードのベクトル表現 • 文字レベルモデルの利点 • 単語単位では低頻度で学習できない場合も対応できる •
現状 • 言語知識(morphology and orthography)のエンコードを説明できない • Bi-LSTMの文字エンコーダーを分析する 2
Tagging Task • 評価を行うモデルはLSTM tagging models Ling et al. (2015)
• Char-LSTM → Word-Bi-LSTM → two-layer perceptron → softmax • 各単語の隠れ層パーセプトロンに送られてタグスコアを生成 • morphosyntactic attribute tagging Pinter et al. (2017) • 独自のperceptron + softmax scaffoldingを使用 3
Language Selection • 2つの形態学的特性に基づいて言語を選択 • 24のデータセットはすべて、Universal Dependencies (UD) version 2.3
(Nivre et al., 2018)から取得 • 言語特性はWorld Atlas of Language Structures (Bickel and Nichols, 2013; Dryer, 2013) • Affixation. • UDで利用可能なすべての言語を選択 • Suffixing以外も含まれる • Morphological Synthesis 4
Technical Setup • データセット • 複数のtreebankがある言語では最も大きいものを使用 • ‘http’ を含む単語は ‘URL’に置換
• ‘@’を含む単語は ‘EMAIL’に置換 • Hyperparameters • bidirectional character-level LSTM • hidden state: 128, character embedding size: 256 • word-level bidirectional LSTM • 2layers, hidden state 128, dropout 0.5 • MLP • Size: tagset size, 活性化関数: tanh 5
Results • Word embeddingなしで同等の精度 • Char embedが256と大きいことに起因 6
Analysis • モデルの分析 • 言語情報をどのようにエンコードしているのか? • Metrics • 各文字ごとの隠れ層の出力を観察 average
absolute, max absolute 7
Analysis • 相互情報(MI)に基づく language-level metric: PDI • base metricの範囲は同じサイズのB個のビンに分割 •
各単語からのbase activationsはT POSタグカテゴリごとに合計され、正規化されて結合 確率分布が生成される • PDIが高いと異なる単語に対して異なる活性化を行っている • タスクとしては優れた分類器になっている 8
Analysis • 言語は各ユニットに1つずつ dhのPDI scoresを生成 • さらに2つの language-level metricsを定義 •
sum of PDI values: • the relative importance of forward and backward units: 9
PDI Patterns • Introflexive languagesは文字系列からPOSま たはmorphosyntacticを学習することが難しい ため全体的に低い 10
Asymmetric Directionality • LSTMの方向性に関する調査 • 不均衡なモデルは、言語特性と統計メトリック に基づいて言語に異なる影響を与えるという 仮説をテスト • forward
and unitsのサイズを変える • LSTMユニットの隠れ層が最終状態に 近い形態の検出に優れている • 単方向LSTMと双方向LSTMの2つの一般的 な手法の間に実質的な妥協点がない 11
Conclusion • 文字レベルのBi-LSTMモデルは多くの言語で意味のある単語表現を計算 するが、その方法は各言語のtypological propertiesによって異なる • この観察結果は、モデル選択の動機になる • agglutinative languagesは単一方向の分析を強く好む
• 今後、メトリックにさらなる制御を導入する • タグの分布やインスタンスの数などのデータセット属性、および収束率や初期化の効 果などの学習関連のプロパティを組み込む 12