Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A robust self-learning method for fully unsuper...
Search
katsutan
June 19, 2019
Technology
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
文献紹介
長岡技術科学大学 自然言語処理研究室
勝田 哲弘
katsutan
June 19, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
180
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
160
Simple task-specific bilingual word embeddings
katsutan
0
180
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
210
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
160
Improving Word Embeddings Using Kernel PCA
katsutan
0
180
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
250
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
230
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
220
Other Decks in Technology
See All in Technology
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
170
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
480
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
AGIについてChatGPTに聞いてみた
blueb
0
130
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
110
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
130
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
280
DynamoDB でスロットリングが発生したとき_大盛りver/when_throttling_occurs_in_dynamodb_long
emiki
1
310
The Rise of LLMOps
asei
7
1.6k
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
590
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
A better future with KSS
kneath
238
17k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
The World Runs on Bad Software
bkeepers
PRO
65
11k
Docker and Python
trallard
40
3.1k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
96
Side Projects
sachag
452
42k
Transcript
A robust self-learning method for fully unsupervised cross-lingual mappings of
word embeddings Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 789–798, 2018. 文献紹介 長岡技術科学大学 自然言語処理研究室 勝田 哲弘
Abstract • 先行研究でadversarial trainingによって教師なしで複数言語の分散表現を 共有することが可能になった ◦ 良い精度 ◦ しかし、評価は非常に近い単語間でのみ行われている •
より堅牢なモデルの提案 ◦ 単語分散表現の構造的類似性を明示的に活用する完全に教師なしの初期化 ◦ iterative self-learningに基づく代替アプローチ 実装は以下で公開されている https://github.com/artetxem/vecmap 2
Introduction • Cross-lingual embedding mappings ◦ 単一言語コーパスを使用して異なる言語ごとに分散表現を個別に訓練し、線形変換によっ て共有空間にマッピングする ▪ 辞書を必要とするものがほとんど
▪ 最近、adversarial trainingで教師なしが可能に ◦ iterative self-learningは非常に小さい辞書( 25対の単語程)からの高品質なマッピングが可 能 (Artetxe et al., 2017) • 単語類似度の分布をもとに初期解を構築 ◦ 教師なし 3
Proposed method • XW X = ZW Z となるようにW X
,W Z を学習 X,Z:各言語の分散表現 ◦ 1: 分散表現の初期化、前処理 ◦ 2: 初期解を生成 ◦ 3: self-learningを繰り返して解を改善 ◦ 4: 得られるマッピングをさらに改善する最終的な改良 4 init_dict map dict
Embedding normalization 前処理 ベクトルの長さを正規化 ↓ 各次元の兵権を中心に揃える ↓ 再び、長さを正規化 内積を取るとcos類似度が計算できる ユークリッド距離が類似度の尺度とみなせる
5
Fully unsupervised initialization • それぞれの語彙を対応させる最初の辞書 ◦ M X == XXT,
M Z = ZZT の間で一致を見つける 6
Robust self-learning 学習は収束するまで次の2つのステップを繰り返す • 現在の辞書Dを最大化する直交マッピングを計算 • 最近傍検索 ◦ 7
Robust self-learning • Stochastic dictionary induction ◦ 類似度行列を確率pで保持、残りを0にする ◦ p
= 0.1から徐々に増やす • Frequency-based vocabulary cutoff ◦ 各言語で高頻度のk単語に制限 • CSLS retrieval ◦ k最近傍の平均コサイン類似度 • Bidirectional dictionary induction 8
Symmetric re-weighting • それぞれの相互相関に従って再加重 9
Experimental settings 対訳辞書抽出の精度を評価 Dinu et al. (2015),subsequent extensions of Artetxe
et al. (2017, 2018) • 分散表現(CBOW: 300-dimension) ◦ WacKy crawling corpora (English, Italian, German) ◦ Common Crawl (Finnish) ◦ WMT News Crawl (Spanish) Zhang et al. (2017a) • 分散表現(CBOW: 50-dimension) ◦ Wikipedia 10
Results 11
Results 12
Ablation test 13
Conclusions • self-learningと初期の弱いマッピング手法を組み合わせたモデルの提案 ◦ 教師なし、ハイパーパラメータに強く依存しない • 教師なし、教師つきマッピングに関する以前の研究と比較して最良の結果を 示した • 将来的には、バイリンガルからマルチリンガルへと拡張し、さらに長いフレー
ズを埋め込む 14