Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A robust self-learning method for fully unsuper...
Search
katsutan
June 19, 2019
Technology
0
300
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
文献紹介
長岡技術科学大学 自然言語処理研究室
勝田 哲弘
katsutan
June 19, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
220
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
230
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
270
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
270
Other Decks in Technology
See All in Technology
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
350
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
1k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
130
生成AIと余白 〜開発スピードが向上した今、何に向き合う?〜
kakehashi
PRO
0
150
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
500
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
190
Featured
See All Featured
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2.1k
Ruling the World: When Life Gets Gamed
codingconduct
0
150
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
97
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
430
Transcript
A robust self-learning method for fully unsupervised cross-lingual mappings of
word embeddings Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 789–798, 2018. 文献紹介 長岡技術科学大学 自然言語処理研究室 勝田 哲弘
Abstract • 先行研究でadversarial trainingによって教師なしで複数言語の分散表現を 共有することが可能になった ◦ 良い精度 ◦ しかし、評価は非常に近い単語間でのみ行われている •
より堅牢なモデルの提案 ◦ 単語分散表現の構造的類似性を明示的に活用する完全に教師なしの初期化 ◦ iterative self-learningに基づく代替アプローチ 実装は以下で公開されている https://github.com/artetxem/vecmap 2
Introduction • Cross-lingual embedding mappings ◦ 単一言語コーパスを使用して異なる言語ごとに分散表現を個別に訓練し、線形変換によっ て共有空間にマッピングする ▪ 辞書を必要とするものがほとんど
▪ 最近、adversarial trainingで教師なしが可能に ◦ iterative self-learningは非常に小さい辞書( 25対の単語程)からの高品質なマッピングが可 能 (Artetxe et al., 2017) • 単語類似度の分布をもとに初期解を構築 ◦ 教師なし 3
Proposed method • XW X = ZW Z となるようにW X
,W Z を学習 X,Z:各言語の分散表現 ◦ 1: 分散表現の初期化、前処理 ◦ 2: 初期解を生成 ◦ 3: self-learningを繰り返して解を改善 ◦ 4: 得られるマッピングをさらに改善する最終的な改良 4 init_dict map dict
Embedding normalization 前処理 ベクトルの長さを正規化 ↓ 各次元の兵権を中心に揃える ↓ 再び、長さを正規化 内積を取るとcos類似度が計算できる ユークリッド距離が類似度の尺度とみなせる
5
Fully unsupervised initialization • それぞれの語彙を対応させる最初の辞書 ◦ M X == XXT,
M Z = ZZT の間で一致を見つける 6
Robust self-learning 学習は収束するまで次の2つのステップを繰り返す • 現在の辞書Dを最大化する直交マッピングを計算 • 最近傍検索 ◦ 7
Robust self-learning • Stochastic dictionary induction ◦ 類似度行列を確率pで保持、残りを0にする ◦ p
= 0.1から徐々に増やす • Frequency-based vocabulary cutoff ◦ 各言語で高頻度のk単語に制限 • CSLS retrieval ◦ k最近傍の平均コサイン類似度 • Bidirectional dictionary induction 8
Symmetric re-weighting • それぞれの相互相関に従って再加重 9
Experimental settings 対訳辞書抽出の精度を評価 Dinu et al. (2015),subsequent extensions of Artetxe
et al. (2017, 2018) • 分散表現(CBOW: 300-dimension) ◦ WacKy crawling corpora (English, Italian, German) ◦ Common Crawl (Finnish) ◦ WMT News Crawl (Spanish) Zhang et al. (2017a) • 分散表現(CBOW: 50-dimension) ◦ Wikipedia 10
Results 11
Results 12
Ablation test 13
Conclusions • self-learningと初期の弱いマッピング手法を組み合わせたモデルの提案 ◦ 教師なし、ハイパーパラメータに強く依存しない • 教師なし、教師つきマッピングに関する以前の研究と比較して最良の結果を 示した • 将来的には、バイリンガルからマルチリンガルへと拡張し、さらに長いフレー
ズを埋め込む 14