Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
190
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
200
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
230
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
190
Improving Word Embeddings Using Kernel PCA
katsutan
0
200
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
290
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
280
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
250
Other Decks in Technology
See All in Technology
産業機械をElixirで制御する
kikuyuta
0
170
New Cache Hierarchy for Container Images and OCI Artifacts in Kubernetes Clusters using Containerd / KubeCon + CloudNativeCon Japan
pfn
PRO
0
150
Long journey of Continuous Delivery at Mercari
hisaharu
1
210
In Praise of "Normal" Engineers (LDX3)
charity
2
850
自分を理解するAI時代の準備 〜マイプロフィールMCPの実装〜
edo_m18
0
110
Eight Engineering Unit 紹介資料
sansan33
PRO
0
3.4k
Digitization部 紹介資料
sansan33
PRO
1
4.2k
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
290
TerraformをSaaSで使うとAzureの運用がこんなに楽ちん!HCP Terraformって何?
mnakabayashi
0
120
IIWレポートからみるID業界で話題のMCP
fujie
0
180
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
0
290
データ戦略部門 紹介資料
sansan33
PRO
1
3.2k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
350
20k
Statistics for Hackers
jakevdp
799
220k
The Language of Interfaces
destraynor
158
25k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
650
Adopting Sorbet at Scale
ufuk
77
9.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.7k
Building Adaptive Systems
keathley
43
2.6k
Faster Mobile Websites
deanohume
307
31k
What's in a price? How to price your products and services
michaelherold
245
12k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14