Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
200
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
280
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
250
Other Decks in Technology
See All in Technology
AI駆動開発に向けた新しいエンジニアマインドセット
kazue
0
330
allow_retry と Arel.sql / allow_retry and Arel.sql
euglena1215
1
160
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
250
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.1k
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
200
ChatGPTとPlantUML/Mermaidによるソフトウェア設計
gowhich501
1
120
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.4k
DDD集約とサービスコンテキスト境界との関係性
pandayumi
2
280
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
180
S3アクセス制御の設計ポイント
tommy0124
2
180
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Designing for Performance
lara
610
69k
Producing Creativity
orderedlist
PRO
347
40k
Balancing Empowerment & Direction
lara
3
610
Site-Speed That Sticks
csswizardry
10
810
RailsConf 2023
tenderlove
30
1.2k
What's in a price? How to price your products and services
michaelherold
246
12k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Into the Great Unknown - MozCon
thekraken
40
2k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Automating Front-end Workflow
addyosmani
1370
200k
Side Projects
sachag
455
43k
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14