Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
160
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
180
Simple task-specific bilingual word embeddings
katsutan
0
180
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
200
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
150
Improving Word Embeddings Using Kernel PCA
katsutan
0
180
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
250
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
220
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
250
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
220
Other Decks in Technology
See All in Technology
FastConnect の冗長性
ocise
0
7.2k
四国クラウドお遍路 2024 in 高知 エンディング
yukataoka
0
160
日経電子版から始まった内製開発の現在地と向き合っている課題/inhouse
nishiuma
0
240
ことばをそろえる / Bridging the Terminology Gap
amaotone
5
1k
標準ライブラリの奥深アップデートを掘り下げよう!
logica0419
2
430
セキュリティ監視の内製化 効率とリスク
mixi_engineers
PRO
7
860
分野に潜むツールの紹介
pojiro
1
350
Datadog を使ったプロダクトとクラウドの セキュリティモニタリング
mrtc0
0
590
ロリポップ! for Gamersを支えるインフラ/lolipop for gamers infrastructure
takumakume
0
110
Evolving DevOps Teams and Flexible Organizational Culture
kakehashi
1
190
脆弱星に導かれて
nishimunea
1
1.6k
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
9
41k
Featured
See All Featured
Statistics for Hackers
jakevdp
793
220k
Bash Introduction
62gerente
608
210k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
23
580
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
ParisWeb 2013: Learning to Love: Crash Course in Emotional UX Design
dotmariusz
109
6.9k
Being A Developer After 40
akosma
83
580k
Building Adaptive Systems
keathley
36
2.1k
Raft: Consensus for Rubyists
vanstee
135
6.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
38
9.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
278
13k
The Cult of Friendly URLs
andyhume
76
5.9k
Music & Morning Musume
bryan
46
6k
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14