$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
210
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
260
Other Decks in Technology
See All in Technology
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
150
Knowledge Work の AI Backend
kworkdev
PRO
0
260
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
240
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
550
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.4k
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
850
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
940
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
160
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
AI with TiDD
shiraji
1
280
Featured
See All Featured
sira's awesome portfolio website redesign presentation
elsirapls
0
89
HDC tutorial
michielstock
0
270
Into the Great Unknown - MozCon
thekraken
40
2.2k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
38
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
What's in a price? How to price your products and services
michaelherold
246
13k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
45
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14