Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
170
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
190
Simple task-specific bilingual word embeddings
katsutan
0
190
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
220
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
170
Improving Word Embeddings Using Kernel PCA
katsutan
0
200
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
270
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
240
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
260
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
240
Other Decks in Technology
See All in Technology
MLflowはどのようにLLMOpsの課題を解決するのか
taka_aki
0
190
Roomの監視可能なクエリのカスタマイズとレガシーコードへの適用
shiita0903
2
160
RaspberryPi CM4(CM5も)面白いぞ!
nonnoise
1
310
きのこカンファレンス_ランチスポンサーセッション
kabaya
1
390
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
410
プロダクト開発者目線での Entra ID 活用
sansantech
PRO
0
300
困難を「一般解」で解く
fujiwara3
9
3.1k
マネコン操作いらず! TerraformでAWSインフラのコーディングに入門しよう
minorun365
PRO
4
1.2k
User Story Mapping + Inclusive Team
kawaguti
PRO
3
660
どうすると生き残れないのか/how-not-to-survive
hanhan1978
13
11k
How to benefit from the latest Keycloak features
ahus1
0
110
ライフステージの変化を乗り越える 探索型のキャリア選択
tenshoku_draft
2
520
Featured
See All Featured
Site-Speed That Sticks
csswizardry
4
420
The Pragmatic Product Professional
lauravandoore
32
6.4k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Typedesign – Prime Four
hannesfritz
41
2.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
590
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14