Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple and Effective Paraphrastic Similarity fr...
Search
katsutan
January 27, 2020
Technology
0
200
Simple and Effective Paraphrastic Similarity from Parallel Translations
文献紹介
https://www.aclweb.org/anthology/P19-1453.pdf
長岡技術科学大学
勝田 哲弘
katsutan
January 27, 2020
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
katsutan
0
250
Other Decks in Technology
See All in Technology
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
160
Introduction to Bill One Development Engineer
sansan33
PRO
0
300
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
10
4.7k
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
390
Wasmのエコシステムを使った ツール作成方法
askua
0
170
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
160
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
14k
"プロポーザルってなんか怖そう"という境界を超えてみた@TSUDOI by giftee Tech #1
shilo113
0
200
Node.js 2025: What's new and what's next
ruyadorno
0
330
新規事業におけるGORM+SQLx併用アーキテクチャ
hacomono
PRO
0
280
このままAIが発展するだけでAGI達成可能な理由
frievea
0
100
Data Hubグループ 紹介資料
sansan33
PRO
0
2.2k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Code Review Best Practice
trishagee
72
19k
Writing Fast Ruby
sferik
629
62k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building an army of robots
kneath
306
46k
GitHub's CSS Performance
jonrohan
1032
470k
4 Signs Your Business is Dying
shpigford
185
22k
How GitHub (no longer) Works
holman
315
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Unsuck your backbone
ammeep
671
58k
Transcript
Simple and Effective Paraphrastic Similarity from Parallel Translations 長岡技術科学大学 自然言語処理研究室
勝田 哲弘 文献紹介 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4602–4608 Florence, Italy, July 28 - August 2, 2019
Abstract ➢言い換え文の埋め込みを学習するためのモデル ➢時間のかかる言い換えコーパスの作成ステップを削除 ➢bitextから直接学習 ➢結果 ➢このモデルは最先端の複雑なモデルよりも優れている ➢高速であり、クロスリンガルタスクに適用できる 2
Introduction ➢これまでの文の類似性 ➢言い換えフレーズのデータセットで学習 ➢大きなバイリンガルコーパスから言い換えデータセット を誘導する ➢本論文 ➢文の埋め込みをbitextで直接学習 ➢高速に文章をエンコードするシンプルなモデル 3
Learning Sentence Embeddings ➢Training ⚫ トレーニングデータ ⚫ それぞれソース言語とターゲット言語の一連の並列文 ペア (
, ) ⚫ ネガティブサンプリング ⚫ の翻訳ではないターゲット文′ をランダムに選択 ⚫ ( , )を( , ′ )よりもマージンδ近づける 4 目的関数 (; ): 各言語のパラメーターを持つ センテンスエンコーダー
Learning Sentence Embeddings ➢Negative Sampling ➢ mega-batching, Wieting and Gimpel(2018)
➢Mが大きいほど困難な例を提供 ➢Mega-batching ➢M個のミニバッチを集約して1つのメガバッチを作成し、 メガバッチから負の例を選択 ➢メガバッチの各ペアに負の例があれば、メガバッチはM 個のミニバッチに分割 5
Learning Sentence Embeddings Encoders ➢SP ➢sentencepiece のサブワードを平均 ➢TRIGRAM ➢文字トライグラムの平均 ➢WORD
➢単語の平均 ➢LSTM-SP ➢Sentencepieceを用いた双方向LSTM 6
Experiments ➢並列データと逆翻訳された並列データの学習 を比較 ➢2012-2016年のSemEval Semantic Textual Similarity (STS) ➢2つのsemantic cross-lingual
tasksでの最良の モデルSPを比較 ➢2017 SemEval STS ➢2018 Building and Using Parallel Corpora (BUCC) 7
Back-Translated Text vs. Parallel Text ➢En-EnはEn-CS(1M) より、 SPを除いて高い相関 ➢同数の英文を用意すれば 同程度の性能
➢En-CS設定でSPは最高の パフォーマンスを発揮
Monolingual and Cross-Lingual Similarity 従来の深層学習モデル を上回る精度
Monolingual and Cross-Lingual Similarity ランダム設定ではTRIGRAMが強い ※語彙の重複がないと精度が低い
Mining Bitext ➢異なる各言語の大規模なコーパスから正しい対訳 ペアを見つける 11
Encoding Speed 12
Does Language Choice Matter? 13
Conclusion ➢bitextを直接使用することにより精度の高い文の埋 め込みを作成 ➢ピボットや逆翻訳などを使用する必要がない ➢言語横断的表現が生成可能 ➢比較可能な従来の方法と比べて圧倒的に高速 14