ac + ad + bc + bd B = ac C = bd <latexit sha1_base64="uwzbJRfZJPhtPg9NA+Ke4ABrqaQ=">AAACMnicbVBNaxsxENU6H02djzrJsRdRU3AwmN200F4MiX1JbwnEicFrzEg7tkW02kXSBszi35RLfkkgh+SQEHrtj6jW2UMTd0Do8d68keaxVApjff/Bq6ysrq1/2PhY3dza3vlU2927MEmmOfZ4IhPdZ2BQCoU9K6zEfqoRYibxkl11C/3yGrURiTq3sxSHMUyUGAsO1lGj2q+Q4USoHLSG2TyX8+N2A5rsoMGb0UEbKG8CjZrM3YxGNAxppyAL0G07JkQVld5Rre63/EXRZRCUoE7KOh3V7sIo4VmMynIJxgwCP7VDN80KLnFeDTODKfArmODAQQUxmmG+WHlOvzomouNEu6MsXbD/OnKIjZnFzHXGYKfmvVaQ/9MGmR3/HOZCpZlFxV8fGmeS2oQW+dFIaORWzhwAroX7K+VT0MCtS7nqQgjer7wMLg5bwbfW4dn3+lGnjGODfCZfSIME5Ac5IifklPQIJzfknjyRZ+/We/RevN+vrRWv9OyTN+X9+Qs9rKca</latexit> (B C) + (A B C)i <latexit sha1_base64="lY1zKoenp8WqIYll0NKJMZ1TPv4=">AAAB+HicbVDLSgMxFL3js9ZHR126CRahIi0zVdBlbTcuK9gHtEPJpJk2NPMgyQh16Je4caGIWz/FnX9jpp2Fth643MM595Kb40acSWVZ38ba+sbm1nZuJ7+7t39QMA+P2jKMBaEtEvJQdF0sKWcBbSmmOO1GgmLf5bTjThqp33mkQrIweFDTiDo+HgXMYwQrLQ3MQqlebpxflG7LaUdsYBatijUHWiV2RoqQoTkwv/rDkMQ+DRThWMqebUXKSbBQjHA6y/djSSNMJnhEe5oG2KfSSeaHz9CZVobIC4WuQKG5+nsjwb6UU9/Vkz5WY7nspeJ/Xi9W3o2TsCCKFQ3I4iEv5kiFKE0BDZmgRPGpJpgIpm9FZIwFJkpnldch2MtfXiXtasW+rFTvr4q1ehZHDk7gFEpgwzXU4A6a0AICMTzDK7wZT8aL8W58LEbXjGznGP7A+PwBjIWQbQ==</latexit> 加減算で答えを得る まず,3回の乗算を先にやる 日本語版P69 17 a + bi <latexit sha1_base64="XJx5hn8e1xqZer/0VlkYvSV6BwI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1NaW9/Y3CpvV3Z29/YPqodHHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6V3md5+o0iySj2YWU1/gsWQhI9hkEr4I2LBac+tuDrRKvILUoEBrWP0ajCKSCCoN4VjrvufGxk+xMoxwOq8MEk1jTKZ4TPuWSiyo9tP81jk6s8oIhZGyJQ3K1d8TKRZaz0RgOwU2E73sZeJ/Xj8x4Y2fMhknhkqyWBQmHJkIZY+jEVOUGD6zBBPF7K2ITLDCxNh4KjYEb/nlVdJp1L3LeuPhqta8LeIowwmcwjl4cA1NuIcWtIHABJ7hFd4c4bw4787HorXkFDPH8AfO5w+qLo39</latexit> c + di <latexit sha1_base64="jx7hmu5VQuLI4YaH/smhw53BBeI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvXisYD+gDWWz2bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBQln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsegHWlDNJ24YZTnuJolgEnHaDyV3ud5+o0iyWj2aaUF/gkWQRI9jkErkI2bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qohs/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJp1L3LeuPhqta8LeIowwmcwjl4cA1NuIcWtIHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w+wRo4B</latexit> 3回の実数乗算を用いて複素数 と の積の計算ができることを示せ. ac bd <latexit sha1_base64="9pWPLasM7biK1KqQ+Xi1vioQz3s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWz2bRLdzdhdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhSln2rjut1NaW9/Y3CpvV3Z29/YPqodHbZ1kilCfJDxR3RBrypmkvmGG026qKBYhp51wfDfzO09UaZbIRzNJaSDwULKYEWys5GNyEUaDas2tu3OgVeIVpAYFWoPqVz9KSCaoNIRjrXuem5ogx8owwum00s80TTEZ4yHtWSqxoDrI58dO0ZlVIhQnypY0aK7+nsix0HoiQtspsBnpZW8m/uf1MhPfBDmTaWaoJItFccaRSdDscxQxRYnhE0swUczeisgIK0yMzadiQ/CWX14l7Ubdu6w3Hq5qzdsijjKcwCmcgwfX0IR7aIEPBBg8wyu8OdJ5cd6dj0VrySlmjuEPnM8fYjWOZw==</latexit> アルゴリズムは入力として を取り, 実数部 と虚数部 を別々に出力しなければならない. a, b, c, d <latexit sha1_base64="/0XJkWW6as7rG8doMBkOg3gNutA=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBQym7VdBj0YvHCvYD26Vks9k2NJssSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyScaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFaEtIrlU3QBrypmgLcMMp91EURwHnHaC8e3M7zxRpZkUD2aSUD/GQ8EiRrCx0iOuoqCKSBWFg3LFrblzoFXi5aQCOZqD8lc/lCSNqTCEY617npsYP8PKMMLptNRPNU0wGeMh7VkqcEy1n80vnqIzq4QoksqWMGiu/p7IcKz1JA5sZ4zNSC97M/E/r5ea6NrPmEhSQwVZLIpSjoxEs/dRyBQlhk8swUQxeysiI6wwMTakkg3BW355lbTrNe+iVr+/rDRu8jiKcAKncA4eXEED7qAJLSAg4Ble4c3Rzovz7nwsWgtOPnMMf+B8/gA36I9Q</latexit> ad + bc <latexit sha1_base64="k/sm0O6uixRdfw/78XLRPM6z7ZQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtemAXJCA9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1bus1h6uKvXbPI4inMApnIMH11CHe2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AEMio65</latexit>
<latexit sha1_base64="qL53cSu9dmByO8Al1Gk78N909xo=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VoF9akCropFN24rGAf0LRhMp20004mYWYilJC/cOOvuHGhiFvd+TdOHwttPXDhcM693HuPFzEqlWV9G5mV1bX1jexmbmt7Z3fP3D9oyDAWmNRxyELR8pAkjHJSV1Qx0ooEQYHHSNMb3Uz85gMRkob8Xo0j0glQn1OfYqS05JqlfoEXYQU6Mg7cZFix0m7isLDveglP4Sm0U4i6Q+gX+JnXHRZdM2+VrCngMrHnJA/mqLnml9MLcRwQrjBDUrZtK1KdBAlFMSNpzokliRAeoT5pa8pRQGQnmf6VwhOt9KAfCl1cwan6eyJBgZTjwNOdAVIDuehNxP+8dqz8q05CeRQrwvFskR8zqEI4CQn2qCBYsbEmCAuqb4V4gATCSkeZ0yHYiy8vk0a5ZJ+XyncX+er1PI4sOALHoABscAmq4BbUQB1g8AiewSt4M56MF+Pd+Ji1Zoz5zCH4A+PzB3rmnZ0=</latexit> の漸近的な限界を求めたい. f(n) = O(n logb a ✏) <latexit sha1_base64="/Co+zHNANF4vde42xchIx70RmKc=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSAkhWE3CtoIQRs7I5gHZNdldjKbDJmdWWZmhbBsa+Ov2FgoYusf2Pk3Th6FJh64cDjnXu69J4gZVdq2v63c0vLK6lp+vbCxubW9U9zdaymRSEyaWDAhOwFShFFOmppqRjqxJCgKGGkHw6ux334gUlHB7/QoJl6E+pyGFCNtJL8IwzKvwAt4U+b3qctE3w9SlB27JFaUCZ5V/GLJrtoTwEXizEgJzNDwi19uT+AkIlxjhpTqOnasvRRJTTEjWcFNFIkRHqI+6RrKUUSUl04+yeCRUXowFNIU13Ci/p5IUaTUKApMZ4T0QM17Y/E/r5vo8NxLKY8TTTieLgoTBrWA41hgj0qCNRsZgrCk5laIB0girE14BROCM//yImnVqs5JtXZ7WqpfzuLIgwNwCMrAAWegDq5BAzQBBo/gGbyCN+vJerHerY9pa86azeyDP7A+fwDWiJkw</latexit> 1. ならば g(n) = O(n logb a) <latexit sha1_base64="zToNuAikPGXJ+PDkWb+jZaUn3fs=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksQnspSRX0IhS9eLOCbYU2hs120y7d7IbdjVBCLv4VLx4U8erP8Oa/cdvmoK0PBh7vzTAzL4gZVdpxvq3C0vLK6lpxvbSxubW9Y+/utZVIJCYtLJiQ9wFShFFOWppqRu5jSVAUMNIJRlcTv/NIpKKC3+lxTLwIDTgNKUbaSL59MKjwKryANxX+kPaYGPhBirKs6ttlp+ZMAReJm5MyyNH07a9eX+AkIlxjhpTquk6svRRJTTEjWamXKBIjPEID0jWUo4goL50+kMFjo/RhKKQpruFU/T2RokipcRSYzgjpoZr3JuJ/XjfR4bmXUh4nmnA8WxQmDGoBJ2nAPpUEazY2BGFJza0QD5FEWJvMSiYEd/7lRdKu19yTWv32tNy4zOMogkNwBCrABWegAa5BE7QABhl4Bq/gzXqyXqx362PWWrDymX3wB9bnD+KYlVQ=</latexit> g(n) = O 0 @ logb n 1 X j=0 a j ⇣ n bj ⌘logb a ✏ 1 A <latexit sha1_base64="VbqBCmzXHh7gsXwYnF0tTEq4mZY=">AAACT3icbZHBSxwxFMYza2t12+qqRy+hi7AeXGa00F4EsRdvKrgq7KxDJvtmNppJhuSNsIT5D720t/4bXjxYitntFKz2QeDH971HXr6kpRQWw/Bn0Fp483bx3dJy+/2HjyurnbX1c6srw2HAtdTmMmUWpFAwQIESLksDrEglXKQ332b+xS0YK7Q6w2kJo4LlSmSCM/RS0snyntreP44lZNiLbVUk7no/rK9cLHVOE5fWVO1ENWVX7rpuujLDuFO1S2daHRuRT3D7+QTbiaG0Qmr110063bAfzou+hqiBLmnqJOn8iMeaVwUo5JJZO4zCEkeOGRRcQt2OKwsl4zcsh6FHxQqwIzfPo6ZbXhnTTBt/FNK5+nzCscLaaeE33SoYTuxLbyb+zxtWmH0dOaHKCkHxPxdllaSo6SxcOhYGOMqpB8aN8LtSPmE+LvRf0PYhRC+f/BrOd/vRXn/39HP34LCJY4lskk+kRyLyhRyQI3JCBoSTO3JPHsmv4HvwEPxuNa2toIEN8k+1lp8ABZa1JQ==</latexit> f(n) <latexit sha1_base64="pG5iFsNQm8e14VQk0dg/VxXte+4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpLAqL4fliltzF0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ106jWvUas/XFWat3kcRTiDc6iCB9fQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4AXnuNyw==</latexit> g(n) <latexit sha1_base64="H/IG5bwopmw0jogcQhVX+ha6RXU=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpHFVXg7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBYAKNzA==</latexit> まず を に代入 logb n 1 X j=0 a j ⇣ n bj ⌘logb a ✏ = n logb a ✏ logb n 1 X j=0 ✓ ab✏ blogb a ◆j = n logb a ✏ logb n 1 X j=0 (b ✏)j = n logb a ✏ ✓ b✏ logb n 1 b✏ 1 ◆ = n logb a ✏ ✓ n✏ 1 b✏ 1 ◆ = n logb a ✏ O (n ✏) = O n logb a <latexit sha1_base64="aNxrwGffN9JVggjb12IJGMBFDcg=">AAAEAHicpVNNb9MwGPYSPkb5WAcSFy4W1dA4rEoGErtMmuDCjSHRbVLdRo7rtO4cJ7KdSZXlC3+FCwcQ4srP4Ma/wWmzztsoQuKVLL1+njzPY7+K05IzpaPo11oQ3rh56/b6ndbde/cfbLQ3Hx6popKE9kjBC3mSYkU5E7Snmeb0pJQU5ymnx+npm5o/PqNSsUJ80LOSDnI8FixjBGsHJZvBY6SqPDHT/cgODeLFGCYmtVDsxBbioZlaxGmmt1EmMTHCmrTGLJJsPNHPfQXeQbRUjBfCwmf7YhW1Os4PwtDlLEXzVM/Oy59a2ELofwL9IN/2r67+WT0D6AVYl+Bz9b7x/3dvcVm/ws9NYGmXpAbbC7N3CzcxPEd8yZK8UJ5bJu1O1I3mBa83cdN0QFOHSfsnGhWkyqnQhGOl+nFU6oHBUjPCqW2hStESk1M8pn3XCpxTNTDzH9jCLYeMYFZIt4SGc9RXGJwrNcvdnLZyrCfqKleDf+L6lc72BoaJstJUkEVQVnGoC1i/BjhikhLNZ67BRDJ3Vkgm2E1euzfTckOIr175enO0241fdHffv+wcvG7GsQ6egKdgG8TgFTgAb8Eh6AES2OBT8CX4Gn4MP4ffwu+LT4O1RvMIXKrwx2/kf1aN</latexit> 中身を評価 もとに戻してdone 31
<latexit sha1_base64="qL53cSu9dmByO8Al1Gk78N909xo=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VoF9akCropFN24rGAf0LRhMp20004mYWYilJC/cOOvuHGhiFvd+TdOHwttPXDhcM693HuPFzEqlWV9G5mV1bX1jexmbmt7Z3fP3D9oyDAWmNRxyELR8pAkjHJSV1Qx0ooEQYHHSNMb3Uz85gMRkob8Xo0j0glQn1OfYqS05JqlfoEXYQU6Mg7cZFix0m7isLDveglP4Sm0U4i6Q+gX+JnXHRZdM2+VrCngMrHnJA/mqLnml9MLcRwQrjBDUrZtK1KdBAlFMSNpzokliRAeoT5pa8pRQGQnmf6VwhOt9KAfCl1cwan6eyJBgZTjwNOdAVIDuehNxP+8dqz8q05CeRQrwvFskR8zqEI4CQn2qCBYsbEmCAuqb4V4gATCSkeZ0yHYiy8vk0a5ZJ+XyncX+er1PI4sOALHoABscAmq4BbUQB1g8AiewSt4M56MF+Pd+Ji1Zoz5zCH4A+PzB3rmnZ0=</latexit> の漸近的な限界を求めたい. 2. ならば f(n) = ⇥ nlogb a <latexit sha1_base64="Ks1AlFFCTG7WiuRanz+qDw6sENc=">AAACEHicbVA9SwNBEN3zM8avU0ubxSDGJtxFQRshaGMZIVEhF8PeZi5Z3Ns7dueEcOQn2PhXbCwUsbW089+4+Sj8ejDweG+GmXlhKoVBz/t0Zmbn5hcWC0vF5ZXVtXV3Y/PSJJnm0OSJTPR1yAxIoaCJAiVcpxpYHEq4Cm/PRv7VHWgjEtXAQQrtmPWUiARnaKWOuxeV1f5J0OgDskBChGV1kwcy6dFOHg4pGwZa9Pq433FLXsUbg/4l/pSUyBT1jvsRdBOexaCQS2ZMy/dSbOdMo+AShsUgM5Ayfst60LJUsRhMOx8/NKS7VunSKNG2FNKx+n0iZ7Exg9geuBsz7Jvf3kj8z2tlGB23c6HSDEHxyaIokxQTOkqHdoUGjnJgCeNa2Fsp7zPNONoMizYE//fLf8llteIfVKoXh6Xa6TSOAtkmO6RMfHJEauSc1EmTcHJPHskzeXEenCfn1XmbtM4405kt8gPO+xfRe5x3</latexit> g(n) = ⇥(nlogb a lg n) <latexit sha1_base64="BLkJ0TYEYNeTtHA0a2yDIQ46FUY=">AAACDHicbVDLSgMxFM34rPVVdekmWIR2U2aqoBuh6MZlhb6gM5ZMmpmGZpIhyQhlmA9w46+4caGIWz/AnX9j2s5CWw8EDuecy809fsyo0rb9ba2srq1vbBa2its7u3v7pYPDjhKJxKSNBROy5yNFGOWkralmpBdLgiKfka4/vpn63QciFRW8pScx8SIUchpQjLSRBqVyWOFVeAXd1ohoVOH3qctEOPBTlGXQZWHKs6pJ2TV7BrhMnJyUQY7moPTlDgVOIsI1ZkipvmPH2kuR1BQzkhXdRJEY4TEKSd9QjiKivHR2TAZPjTKEgZDmcQ1n6u+JFEVKTSLfJCOkR2rRm4r/ef1EB5deSnmcaMLxfFGQMKgFnDYDh1QSrNnEEIQlNX+FeIQkwtr0VzQlOIsnL5NOveac1ep35+XGdV5HARyDE1ABDrgADXALmqANMHgEz+AVvFlP1ov1bn3MoytWPnME/sD6/AFBbZqE</latexit> f(n) <latexit sha1_base64="pG5iFsNQm8e14VQk0dg/VxXte+4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpLAqL4fliltzF0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ106jWvUas/XFWat3kcRTiDc6iCB9fQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4AXnuNyw==</latexit> g(n) <latexit sha1_base64="H/IG5bwopmw0jogcQhVX+ha6RXU=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpHFVXg7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBYAKNzA==</latexit> まず を に代入 g(n) = ⇥ 0 @ logb n 1 X j=0 aj ⇣ n bj ⌘logb a 1 A <latexit sha1_base64="QBLS8MVoVNa+EdN3xkMW9vtKSSM=">AAACS3icbVBNa9tAFFy5TZO4X257zGWpCTiHGikppJdAaC85phAnAcsRT+sneZPVSuw+Fcyi/9dLL731T/SSQ0vpIWtHgXwNLAwzb3hvJ62UtBSGv4LOk6crz1bX1rvPX7x89br35u2xLWsjcCRKVZrTFCwqqXFEkhSeVgahSBWepBdfFv7JNzRWlvqI5hVOCsi1zKQA8lLSS/OB3tqLj2ZIECvMaBDbukjc+V7YnLlYlTlPXNpw/SFqOJy586adygwIpxuXLrQmNjKf0dbtBNyISa8fDsMl+EMStaTPWhwmvZ/xtBR1gZqEAmvHUVjRxIEhKRQ23bi2WIG4gBzHnmoo0E7csouGb3plyrPS+KeJL9XbCQeFtfPCH7hZAM3sfW8hPuaNa8o+TZzUVU2oxfWirFacSr4olk+lQUFq7gkII/2tXMzAt0S+/q4vIbr/5YfkeHsY7Qy3v37s739u61hjG+w9G7CI7bJ9dsAO2YgJ9p39Zn/Y3+BHcBn8C/5fj3aCNvOO3UFn5Qq9QbR8</latexit> logb n 1 X j=0 aj ⇣ n bj ⌘logb a = nlogb a logb n 1 X j=0 ⇣ a blogb a ⌘j = nlogb a logb n 1 X j=0 1 = nlogb a logb n <latexit sha1_base64="ecHlZmsiitUNdZaqrsWwW5L6WLE=">AAAC3XiclVLBThsxEPUuLaVpSwM99mI1oqKHRru0ElyQUHvpkUoNILJhNet4Ewevd2XPIkWWJS4cWlW98l/c+A8+oE6IRBrKgZEsPb3xezOecVZJYTCKroNw6cnT5WcrzxsvXr5afd1cWz8wZa0Z77BSlvooA8OlULyDAiU/qjSHIpP8MDv9OskfnnFtRKl+4LjivQIGSuSCAXoqbd4kpi5SO9qN3IlNZDmgqc0cVR9jR+HEjlwieY6bSa6BWeVsNuFcosVgiB/mFeDo+121wDxsPm8LU9t54V2BkTdJHuVM4wcUd7fSZitqR9Og90E8Ay0yi/20eZX0S1YXXCGTYEw3jirsWdAomOSukdSGV8BOYcC7HioouOnZ6XYc3fBMn+al9kchnbLzCguFMePCN7ZRAA7NYm5C/i/XrTHf6Vmhqhq5YreF8lpSLOlk1bQvNGcoxx4A08L3StkQ/MTRf4iGH0K8+OT74GCrHX9qb33/3Nr7MhvHCnlL3pFNEpNtske+kX3SISw4Ds6Dn8GvMA0vwt/hn9urYTDTvCH/RHj5FxhZ5o8=</latexit> 中身を評価 もとに戻してdone 32