Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
どうやってプログラミングを学んだか
Search
Keichi Takahashi
June 21, 2018
Programming
0
220
どうやってプログラミングを学んだか
My personal experience in learning how to code.
Keichi Takahashi
June 21, 2018
Tweet
Share
More Decks by Keichi Takahashi
See All by Keichi Takahashi
NISQ時代を見据えたバッチ型量子回路シミュレータの開発
keichi
0
15
Performance analysis of mdx II: A next-generation cloud platform for cross- disciplinary data science research
keichi
0
62
Modernizing an Operational Real-time Tsunami Simulator to Support Diverse Hardware Platforms
keichi
0
120
Prototype of a Batched Quantum Circuit Simulator for the Vector Engine
keichi
0
150
ベクトル型スーパーコンピュータ「AOBA-S」の性能評価
keichi
0
710
Implementation and Application of High-Performance Empirical Dynamic Modeling
keichi
0
200
Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Vector Supercomputer
keichi
0
650
Accelerating Empirical Dynamic Modeling using High Performance Computing
keichi
0
900
Introduction to software optimization
keichi
0
280
Other Decks in Programming
See All in Programming
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
210
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
900
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.1k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
730
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
Go コードベースの構成と AI コンテキスト定義
andpad
0
150
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
500
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
340
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
430
Featured
See All Featured
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
140
Building an army of robots
kneath
306
46k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Amusing Abliteration
ianozsvald
0
80
Believing is Seeing
oripsolob
0
19
Site-Speed That Sticks
csswizardry
13
1k
Automating Front-end Workflow
addyosmani
1371
200k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
35
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
270
First, design no harm
axbom
PRO
1
1.1k
Transcript
Ͳ͏ͬͯϓϩάϥϛϯάΛֶΜ͔ͩ Լᑍݚશମྠߨ ݄ ߴڮܛஐ
தֶ࣌ϓϩάϥϛϯάͱͷग़ձ͍ ग़యIUUQQPDLFUGSFFGSIUNMTIBSQQDH@FIUNM
Ҿͬӽ͠ͷՙΓதʹϙέίϯ ϓϩάϥϛϯάͰ͖Δి Λൃݟ ‣ ਓແೳɺࣜిɺଟഒԋࢉίʔυͳͲ৭ʑͭͬͨ͘ ‣ *' '03 (050 (046#ͳͲͷجຊతͳ੍ޚߏจΛཧղͨ͠
தֶ࣌ϓϩάϥϛϯάͱͷग़ձ͍ $16 4$ CJU L)[ ϝϞϦ όΠτ σΟεϓϨΠ ܻʷߦ ରԠݴޠ #"4*$ ൃച 4)"311$(ॾݩ
ஷΊ͓ͨখݣ͍ͰύιίϯΛࣗ࡞͢Δ͜ͱΛܾҙ ‣ ".%"UIMPO9ɺ$'%ͷϝϞϦɺ/7*%*"(F'PSDFͷάϥϘ ‣ ϝϞϦͷॳظෆྑʹݟΘΕΔͳΜͱ͔ ‣ ࢥ͏ଘϓϩάϥϛϯάͰ͖Δڥ͕ͬͨ ‣ ͪͳΈʹࣗʹΠϯλʔωοτ·ͩͳ͔ͬͨͷͰɺֶߍͷ1$Ͱ ։ൃڥυΩϡϝϯτΛμϯϩʔυ͍ͯͨ͠
ߴߍ࣌1$ࣗ࡞
ཧͷઌੜʹɺࡕେͰ։࠵͢Δߴߍੜͷࣗ༝ݚڀͷൃදձʹ ग़͞ͳ͍͔ͱݴΘΕٸᬎωλΛߟ͑ͨ ߴߍ࣌ཧγϛϡϨʔγϣϯ ಋγϛϡϨʔγϣϯ ϥΠϑήʔϜ
ʮͰͰ͖Δ04ࣗ࡞ೖʯ ߹ल࣮ஶ Λߪೖ ‣ $1604ͷΈΛॳΊͯΓɺϨΠϠʹڵຯΛ࣋ͬͨ ‣ ͜ͷຊͰॳΊͯΞηϯϒϥͱ$ΛͪΌΜͱཧղͨ͠ ߴߍ࣌04ࣗ࡞ೖΛಡΜͰ04Λͭ͘Δ
ग़యIUUQCMPHMJWFEPPSKQEBOLPHBJBSDIJWFTIUNM
༑ਓΒ෦׆Λ্ཱͪ͛ɺΞυϕϯνϟʔήʔϜΛͭͬͨ͘ ‣ ͳ͔ͥήʔϜΤϯδϯΛ$ ͰϑϧεΫϥονͰ։ൃ ‣ ͳ͔ͥಠࣗͷεΫϦϓτݴޠͷ࣮ܾఆ ҊͷఆίϯύΠϧΤϥʔͱηάϑΥͷཛྷʹݟΘΕΔ ‣ ͦͦ$ ϝϞϦཧΛͪΌΜͱཧղ͍ͯ͠ͳ͍
‣ ߏจղੳثͷ࣮ͷͨΊʹɺ#PPTUͷςϯϓϨʔτϝλ ϓϩάϥϛϯάΛۦͨ͠ϥΠϒϥϦʹखΛग़ͯ͠͠·͏ ‣ ιʔείʔυཧγεςϜͳΜͯͷવΒͳ͍ ‣ ͕ͩɺͳΜͱ͔͠ɺਏ͔͕ٕͬͨज़ྗ্͕ͬͨ ߴߍ࣌$ ͰಉਓήʔϜΛͭ͘Δ
ߴߍ࣌$ ͰಉਓήʔϜΛͭ͘Δ IUUQTHJUIVCDPNLFJDIJJSJEJVN λϒͱۭന͕ࠞࡏ ۭന͕ۃΊͯগͳ͍ ṖͷΤϥʔ
ॳΊͯझຯͰͳ͘ɺۀͱͯ͠ϓϩάϥϜΛॻ͍ͨ ‣ ΄΅ ྫ֎Ͱམͪͳ͍ϓϩάϥϜͷॻ͖ํΛֶΜͩ ‣ ϢʔβϏϦςΟ จݴͷ౷ҰɺϘλϯͷஔɺγϣʔτΧοτΩʔɺ FUD ʹྀͨ͠ઃܭΛֶΜͩ ‣
͕ࣗॻ͍ͨϓϩάϥϜ͕ࣾձͷதͰಈ͘໘ന͞Λͬͨ ҰํͰʜ ‣ ೲظલΛ͑Δ͜ͱ ‣ 7JTVBM#BTJDΛॻ͔͟ΔΛಘͳ͍͜ͱ͋ͬͨ ‣ ιʔείʔυཧ.JDSPTPGU5FBN'PVOEBUJPO4FSWFSͱ͍͏ 4VCWFSTJPOʹྼΔ ֶ෦࣌גࣜձࣾΫϨϒ
ֶ෦࣌גࣜձࣾΫϨϒ ϓϥζϚͷޫੳ ଠཅిͷిࢠݦඍڸࣸਅͷղੳ ग़యIUUQXXXDSFWDPKQ
େֶӃ࣌ϑΣϯϦϧגࣜձࣾ ग़యIUUQTXXXGFOSJSJODDPNKQTMFJQOJS
ଞʹ৭ʑΤϐιʔυ͋Δ͚Ͳʜ ‣ ϒϥοΫͳେखཱྀߦཧళͰϥτϏΞਓͱಇ͍ͨͱ͔ ‣ μΠίΫυϥοάͰͷόΠτΛͰΊͨͱ͔ ‣ ϋοΧιϯͰग़ձͬͨϑϦʔϥϯεͷΤϯδχΞͱ༑ୡʹͳΓ ԿʹͬͯҰॹʹࣄͨ͠ͱ͔ ‣ ϋοΧιϯͰԞ͞ΜΛݟ͚ͭͨͱ͔
‣ ٯब׆Ͱඒຯ͍͠͝൧Λ৭ʑ৯ͨͱ͔ ‣ ʜ ֶ෦ʙେֶӃ࣌লུ
ͻͨ͢ΒϓϩάϥϜΛॻ͖ଓ͚ͨ ‣ ࢥ͍͍ͭͨ໘ന͍͜ͱΛย͔ͬΒίʔυʹམͱͨ͠ ‣ ϓϩάϥϜΛॻ͘΄Ͳɺॻ͚ΔϓϩάϥϜͷ෯ͱ։ൃޮ͕ ্͕ΓɺΑΓଟ͘ͷϓϩάϥϜΛॻ͚ΔΑ͏ʹͳͬͨ ࠓͷࣗʹͪΐͬͱແཧ͔ͳʜͱࢥ͏͜ͱʹऔΓΜͩ ‣ ࠜੑͬΆ͍͕ɺϓϩάϥϛϯάͳΒࣦഊͯ͠ϦεΫ΄΅θϩ ͳͷͰઓͷظߴ͍ࢥ͏
‣ ΞϧόΠτͱͯ͠ϓϩάϥϛϯάΛ͢Εɺదͳײͱ ϓϨογϟʔ͕͋Δ ͞Βʹ͓ۚΒ͑Δ ৼΓฦͬͯΈͯྑ͔ͬͨ͜ͱ
ՌΛ͘ެ։ɾએ͢Δ ‣ ϑΥʔϥϜɺ.-ɺϒϩάFUD 6/*9-JOVYʹͬͱૣ͘৮ΕΔ ‣ 6/*9ܥΛ৮Γͩͨ͠ͷֶ෦ʹೖֶ͔ͯ͠Β ‣ 6/*9ͷιϑτΣΞࢿ࢈େͰ͋Γɺ044ͷ΄ͱΜͲ͕6/*9ܥ 04Λఆ͍ͯ͠Δ ίϯϐϡʔλͷΈΛֶͿ
‣ ϓϩάϥϛϯάΛֶͿʺίϯϐϡʔλΛֶͿ ‣ ͨͩ͠ɺίϯϐϡʔλΛֶͿ࠷͔ͭ࠷ָͳํ๏ɺ ϓϩάϥϛϯάΛ௨ͯͩ͠ͱࢥ͏ ৼΓฦͬͯΈͯল
࣌ؒΛ͏ ‣ ेఔͰΓͳ͍ɻʙ࣌ؒҎ্ϓϩάϥϛϯά͚ͩʹ ूத͢Δ ࣌ؒΛͭ͘Δ ਓͰΔ ‣ গͳ͘ͱࣗͷपΓͷ༏लͳϓϩάϥϚօಠֶ ଞਓͷιʔείʔυΛಡΉ
‣ ଞਓͷιʔείʔυΛಡ·ͳ͍ͱࣗݾຬͷྖҬΛग़ΒΕͳ͍ ͭ͘Γ͍ͨͷΛܾΊΔ ‣ ݁ہϓϩάϥϛϯάखஈʹ͗͢ͳ͍ ϓϩάϥϛϯάͰ͖ΔΑ͏ʹͳΔίπ