Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]ConsistencyModels
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 12, 2023
Technology
0
420
[Journal Club]ConsistencyModels
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 12, 2023
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
keio_smilab
PRO
0
34
[Journal club] Improved Mean Flows: On the Challenges of Fastforward Generative Models
keio_smilab
PRO
0
79
[Journal club] MemER: Scaling Up Memory for Robot Control via Experience Retrieval
keio_smilab
PRO
0
60
[Journal club] Flow Matching for Generative Modeling
keio_smilab
PRO
1
290
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
2
160
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
33
[Journal club] Focusing on What Matters: Object-Agent-centric Tokenization for Vision Language Action Models
keio_smilab
PRO
0
7
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
65
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
93
Other Decks in Technology
See All in Technology
ESXi のAIOps だ!2025冬
unnowataru
0
340
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
160
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
150
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
170
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
240
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
170
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
150
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
270
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Prompt Engineering for Job Search
mfonobong
0
120
Context Engineering - Making Every Token Count
addyosmani
9
550
Un-Boring Meetings
codingconduct
0
160
Deep Space Network (abreviated)
tonyrice
0
21
What's in a price? How to price your products and services
michaelherold
246
13k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
GraphQLとの向き合い方2022年版
quramy
50
14k
Paper Plane (Part 1)
katiecoart
PRO
0
1.9k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
Game over? The fight for quality and originality in the time of robots
wayneb77
1
66
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
Transcript
Consistency Models Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever,
OpenAI, 2023 慶應義塾大学 杉浦孔明研究室 飯岡雄偉 Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models. arXiv preprint arXiv:2303.01469.
概要 背景 提案手法 結果 まとめ 概要:Consistency Models 拡散モデルの顕著な成功(画像生成、音声合成、…) ⚫
多段階で反復的なdenoisingを行う = 計算コストの増大 ⚫ 従来の1-stepでの生成モデル(GAN, VAE, …)よりも10~2000倍の計算コスト Consitency Modelの提案 ⚫ 「拡散モデルの特徴 + 1-stepでの画像生成」を目指す2つのアプローチ • 事前学習された拡散モデルの蒸留、Consistency modelのみでの訓練 結果 ⚫ 既存の蒸留手法を上回る & ノイズレベルに左右されにくく一貫した生成を可能に
概要 背景 提案手法 結果 まとめ 背景:拡散モデルの成功と計算コスト 様々な分野で成功を収めている 拡散モデルの概要
⚫ 徐々にノイズを加える拡散過程 ⚫ 徐々にノイズを減らす逆拡散過程 • おおよそ1000~2000-step ⚫ 画像等に対して、より精微な理解 計算コストが膨大 ⚫ 1-step model × 20~1000 @LeonardoAi_ @akamikeb
概要 背景 提案手法 結果 まとめ 関連研究:拡散モデルとその蒸留モデル 手法 内容 DDPM[Ho+, NeurIPS20]
• 拡散モデルによって、高性能な画像生成を可能に • 複数ステップにより、計算量が膨大 PD[Salimans&Ho+, ICLR22] • N-stepの生成モデルをN/2-stepに蒸留 → 4-stepへ • まだ計算コストが高く、性能が拡散モデルと比較して不十分 DDPM[Ho+, NeurIPS20] PD[Salimans&Ho+, ICLR22]
概要 背景 提案手法 結果 まとめ 提案手法:Consistency Modelの概要 「1-stepでの生成 +
反復的なサンプリング」を行うモデル 理想的にはどのノイズレベルからでも画像を復元させる ⚫ Probability Flow ODE(直訳:確率的常時微分方程式)から原点を求めることで可能に
概要 背景 提案手法 結果 まとめ 事前知識:スコアベースの生成モデル Score-based generative models
⚫ スコア関数(入力 に関する確率密度関数の予測勾配)を最適化することで求める • ランダムウォークの方向をデータとして「自然な方向」に制御する • 例: スコア関数 ランジュバンダイナミクスを表す確率微分方程式 より自然な を生成 「真の」スコア関数
概要 背景 提案手法 結果 まとめ 事前知識:スコアベースの生成モデル スコアマッチング ⚫ 真のスコア関数を導くのは難しい(確率密度関数が未知なことがほとんど)
⚫ [Vincent, 2011]では、Denoising Score Matching; DSMが提唱 微小のガウシアンノイズを加えて差を計算 ガウシアン分布における 真のスコア関数 詳細はAppendixへ
概要 背景 提案手法 結果 まとめ 提案手法:拡散モデルからの流れ 拡散モデルはスコアベースモデルといえる[Song+, ICLR21] ⚫
PF ODEで拡散モデルは表現できる(証明は[Song+, ICLR21]参照) ここからこのODEを解いて、2つのモードで学習を行う ⚫ ①事前学習された拡散モデルの蒸留、②Consistency modelのみでの訓練 簡単にするために 簡単にするために Empirical PF ODE
概要 背景 提案手法 結果 まとめ 提案手法:拡散モデルにおける蒸留モデル EDM[Karras+, NeurIPS22]という既存のスコアベースモデルを蒸留
PF ODEをODE solverで解き、1-step分がdenoiseされた も入力 ⚫ ODE solverでは近似解を求めることができる この2つの距離を近づけるように学習 距離にはL1, L2, LPIPS[Zhang+, CVPR18]を利用 詳しい説明はAppendix
概要 背景 提案手法 結果 まとめ 提案手法:Consistency modelのみでの学習 EDMのスコア関数を用いる
スコア関数の簡略化→Empirical PF ODEへ ⚫ 微分 ⚫ 積分らしいことを1回 ⚫ の利用 ⚫ 変形 ⚫ ベイズの定理 ⚫ 期待値計算、最後はAppendixへ
概要 背景 提案手法 結果 まとめ 実験設定 データセット ⚫ CIFAR-10,
ImageNet 64×64, LSUN Bedroom 256×256, LSUN Cat 256×256 評価指標 ⚫ NFE:何ステップの処理か、FID:画像の分布距離、IS:多様性と質を評価 学習環境 ⚫ A100のクラスタを使っている、との記載のみ ⚫ 実際にコードを見ると、8個のGPUで訓練が行われていそう
概要 背景 提案手法 結果 まとめ 定量的結果:既存の蒸留手法を上回り、拡散モデルに近づく CD: 蒸留モード
CT: 単独での学習 NFEとその他の指標との トレードオフ ⚫ その中でも提案手法は影響 を受けづらい 手法 NFE(↓) FID(↓) IS(↑) DDPM[Ho+, NeurIPS20] 1000 3.17 9.46 EDM[Karras+, NeurIPS22] 36 2.04 9.84 PD[Salimans&Ho+, ICLR22] 1 8.34 8.69 CD 1 3.55 9.48 CD 2 2.93 9.75 CT 1 8.70 8.49
概要 背景 提案手法 結果 まとめ 定性的結果:少ないステップで精微な画像の生成 少ないステップで同等の性能 EDM(36-step) CT(1-step)
CT(2-step) 制約の多いimg2imgで有用
概要 背景 提案手法 結果 まとめ まとめ: Consistency Models 拡散モデルの顕著な成功(画像生成、音声合成、…)
⚫ 多段階で反復的なdenoisingを行う = 計算コストの増大 ⚫ 従来の1-stepでの生成モデル(GAN, VAE, …)よりも10~2000倍の計算コスト Consitency Modelの提案 ⚫ 「拡散モデルの特徴 + 1-stepでの画像生成」を目指す2つのアプローチ • 事前学習された拡散モデルの蒸留、Consistency modelのみでの訓練 結果 ⚫ 既存の蒸留手法を上回る & ノイズレベルに左右されにくく一貫した生成を可能に
概要 背景 提案手法 結果 まとめ 所感 Strength ⚫ どうしてもボトルネックとなる拡散モデルの計算コストを急速に落としたところが面白い
⚫ 比較実験もかなり行われていて、信頼性が高い Weakenesses ⚫ 他の拡散モデルに合わせているためか、解像度の低いデータセットが使われている点 動作確認 ⚫ CUDA11.7以上が必須だったので環境構築まではしたが、時間の都合で至らなかった
概要 背景 提案手法 結果 まとめ Appendix:スコア関数の簡略化 正規分布に従うため成り立つ