Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]ConsistencyModels
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 12, 2023
Technology
0
330
[Journal Club]ConsistencyModels
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 12, 2023
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
27
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
26
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
7
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
11
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
26
[Journal club] Detecting and Preventing Hallucinations in Large Vision Language Models
keio_smilab
PRO
1
72
[IROS24] Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models
keio_smilab
PRO
0
46
[IROS24] Learning-To-Rank Approach for Identifying Everyday Objects Using a Physical-World Search Engine
keio_smilab
PRO
0
77
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
keio_smilab
PRO
1
120
Other Decks in Technology
See All in Technology
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
150
【LT】ソフトウェア産業は進化しているのか? #Agilejapan
takabow
0
100
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
230
Application Development WG Intro at AppDeveloperCon
salaboy
0
200
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
610
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
130
静的解析で実現した効率的なi18n対応の仕組みづくり
minako__ph
1
110
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
7
690
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
Storybook との上手な向き合い方を考える
re_taro
5
1.2k
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
560
LINEヤフーにおけるPrerender技術の導入とその効果
narirou
1
160
Featured
See All Featured
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
A designer walks into a library…
pauljervisheath
204
24k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Bash Introduction
62gerente
608
210k
Code Review Best Practice
trishagee
64
17k
How STYLIGHT went responsive
nonsquared
95
5.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
How to train your dragon (web standard)
notwaldorf
88
5.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Scaling GitHub
holman
458
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Transcript
Consistency Models Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever,
OpenAI, 2023 慶應義塾大学 杉浦孔明研究室 飯岡雄偉 Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. (2023). Consistency models. arXiv preprint arXiv:2303.01469.
概要 背景 提案手法 結果 まとめ 概要:Consistency Models 拡散モデルの顕著な成功(画像生成、音声合成、…) ⚫
多段階で反復的なdenoisingを行う = 計算コストの増大 ⚫ 従来の1-stepでの生成モデル(GAN, VAE, …)よりも10~2000倍の計算コスト Consitency Modelの提案 ⚫ 「拡散モデルの特徴 + 1-stepでの画像生成」を目指す2つのアプローチ • 事前学習された拡散モデルの蒸留、Consistency modelのみでの訓練 結果 ⚫ 既存の蒸留手法を上回る & ノイズレベルに左右されにくく一貫した生成を可能に
概要 背景 提案手法 結果 まとめ 背景:拡散モデルの成功と計算コスト 様々な分野で成功を収めている 拡散モデルの概要
⚫ 徐々にノイズを加える拡散過程 ⚫ 徐々にノイズを減らす逆拡散過程 • おおよそ1000~2000-step ⚫ 画像等に対して、より精微な理解 計算コストが膨大 ⚫ 1-step model × 20~1000 @LeonardoAi_ @akamikeb
概要 背景 提案手法 結果 まとめ 関連研究:拡散モデルとその蒸留モデル 手法 内容 DDPM[Ho+, NeurIPS20]
• 拡散モデルによって、高性能な画像生成を可能に • 複数ステップにより、計算量が膨大 PD[Salimans&Ho+, ICLR22] • N-stepの生成モデルをN/2-stepに蒸留 → 4-stepへ • まだ計算コストが高く、性能が拡散モデルと比較して不十分 DDPM[Ho+, NeurIPS20] PD[Salimans&Ho+, ICLR22]
概要 背景 提案手法 結果 まとめ 提案手法:Consistency Modelの概要 「1-stepでの生成 +
反復的なサンプリング」を行うモデル 理想的にはどのノイズレベルからでも画像を復元させる ⚫ Probability Flow ODE(直訳:確率的常時微分方程式)から原点を求めることで可能に
概要 背景 提案手法 結果 まとめ 事前知識:スコアベースの生成モデル Score-based generative models
⚫ スコア関数(入力 に関する確率密度関数の予測勾配)を最適化することで求める • ランダムウォークの方向をデータとして「自然な方向」に制御する • 例: スコア関数 ランジュバンダイナミクスを表す確率微分方程式 より自然な を生成 「真の」スコア関数
概要 背景 提案手法 結果 まとめ 事前知識:スコアベースの生成モデル スコアマッチング ⚫ 真のスコア関数を導くのは難しい(確率密度関数が未知なことがほとんど)
⚫ [Vincent, 2011]では、Denoising Score Matching; DSMが提唱 微小のガウシアンノイズを加えて差を計算 ガウシアン分布における 真のスコア関数 詳細はAppendixへ
概要 背景 提案手法 結果 まとめ 提案手法:拡散モデルからの流れ 拡散モデルはスコアベースモデルといえる[Song+, ICLR21] ⚫
PF ODEで拡散モデルは表現できる(証明は[Song+, ICLR21]参照) ここからこのODEを解いて、2つのモードで学習を行う ⚫ ①事前学習された拡散モデルの蒸留、②Consistency modelのみでの訓練 簡単にするために 簡単にするために Empirical PF ODE
概要 背景 提案手法 結果 まとめ 提案手法:拡散モデルにおける蒸留モデル EDM[Karras+, NeurIPS22]という既存のスコアベースモデルを蒸留
PF ODEをODE solverで解き、1-step分がdenoiseされた も入力 ⚫ ODE solverでは近似解を求めることができる この2つの距離を近づけるように学習 距離にはL1, L2, LPIPS[Zhang+, CVPR18]を利用 詳しい説明はAppendix
概要 背景 提案手法 結果 まとめ 提案手法:Consistency modelのみでの学習 EDMのスコア関数を用いる
スコア関数の簡略化→Empirical PF ODEへ ⚫ 微分 ⚫ 積分らしいことを1回 ⚫ の利用 ⚫ 変形 ⚫ ベイズの定理 ⚫ 期待値計算、最後はAppendixへ
概要 背景 提案手法 結果 まとめ 実験設定 データセット ⚫ CIFAR-10,
ImageNet 64×64, LSUN Bedroom 256×256, LSUN Cat 256×256 評価指標 ⚫ NFE:何ステップの処理か、FID:画像の分布距離、IS:多様性と質を評価 学習環境 ⚫ A100のクラスタを使っている、との記載のみ ⚫ 実際にコードを見ると、8個のGPUで訓練が行われていそう
概要 背景 提案手法 結果 まとめ 定量的結果:既存の蒸留手法を上回り、拡散モデルに近づく CD: 蒸留モード
CT: 単独での学習 NFEとその他の指標との トレードオフ ⚫ その中でも提案手法は影響 を受けづらい 手法 NFE(↓) FID(↓) IS(↑) DDPM[Ho+, NeurIPS20] 1000 3.17 9.46 EDM[Karras+, NeurIPS22] 36 2.04 9.84 PD[Salimans&Ho+, ICLR22] 1 8.34 8.69 CD 1 3.55 9.48 CD 2 2.93 9.75 CT 1 8.70 8.49
概要 背景 提案手法 結果 まとめ 定性的結果:少ないステップで精微な画像の生成 少ないステップで同等の性能 EDM(36-step) CT(1-step)
CT(2-step) 制約の多いimg2imgで有用
概要 背景 提案手法 結果 まとめ まとめ: Consistency Models 拡散モデルの顕著な成功(画像生成、音声合成、…)
⚫ 多段階で反復的なdenoisingを行う = 計算コストの増大 ⚫ 従来の1-stepでの生成モデル(GAN, VAE, …)よりも10~2000倍の計算コスト Consitency Modelの提案 ⚫ 「拡散モデルの特徴 + 1-stepでの画像生成」を目指す2つのアプローチ • 事前学習された拡散モデルの蒸留、Consistency modelのみでの訓練 結果 ⚫ 既存の蒸留手法を上回る & ノイズレベルに左右されにくく一貫した生成を可能に
概要 背景 提案手法 結果 まとめ 所感 Strength ⚫ どうしてもボトルネックとなる拡散モデルの計算コストを急速に落としたところが面白い
⚫ 比較実験もかなり行われていて、信頼性が高い Weakenesses ⚫ 他の拡散モデルに合わせているためか、解像度の低いデータセットが使われている点 動作確認 ⚫ CUDA11.7以上が必須だったので環境構築まではしたが、時間の都合で至らなかった
概要 背景 提案手法 結果 まとめ Appendix:スコア関数の簡略化 正規分布に従うため成り立つ