Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]MultiMAE: Multi-modal Multi-task ...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
October 31, 2022
Technology
0
390
[Journal Club]MultiMAE: Multi-modal Multi-task Masked Autoencoders (ECCV22)
Semantic Machine Intelligence Lab., Keio Univ.
PRO
October 31, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
0
590
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
140
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
160
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
80
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
110
Will multimodal language processing change the world?
keio_smilab
PRO
4
630
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
200
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
180
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
190
Other Decks in Technology
See All in Technology
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
100
LinkX_GitHubを基点にした_AI時代のプロジェクトマネジメント.pdf
iotcomjpadmin
0
170
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
500
Amazon S3標準/ S3 Tables/S3 Express One Zoneを使ったログ分析
shigeruoda
3
450
AIのAIによるAIのための出力評価と改善
chocoyama
2
540
PostgreSQL 18 cancel request key長の変更とRailsへの関連
yahonda
0
120
地図も、未来も、オープンに。 〜OSGeo.JPとFOSS4Gのご紹介〜
wata909
0
100
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
110
ひとり情シスなCTOがLLMと始めるオペレーション最適化 / CTO's LLM-Powered Ops
yamitzky
0
420
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
230
OpenHands🤲にContributeしてみた
kotauchisunsun
1
400
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
210
Rails Girls Zürich Keynote
gr2m
94
14k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Music & Morning Musume
bryan
46
6.6k
The Cost Of JavaScript in 2023
addyosmani
51
8.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
We Have a Design System, Now What?
morganepeng
53
7.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Transcript
MultiMAE: Multi-modal Multi-task Masked Autoencoders 慶應義塾大学 杉浦孔明研究室 飯岡 雄偉 Roman
Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir, Institute of Technology Lausanne (EPFL) Bachmann, R., Mizrahi, D., Atanov, A., & Zamir, A. (2022). MultiMAE: Multi-modal Multi-task Masked Autoencoders. In ECCV.
概要:MultiMAE 2 • 様々なタスクに遷移しやすい事前学習モデル • 複数モダリティにおける画像を入力 – RGB, Depth, Semantic
Segmentation • 各モダリティごとに出力 – それぞれ疑似的にGTを作成 – タスクごとに損失を算出 https://multimae.epfl.ch/
研究背景:扱いやすい画像特徴量の事前学習モデル • BERT[Jacob+, NAACL19] – 文をマスクして,予測 – 言語特徴量の事前学習モデルとしてbreak through •
Masked Autoencoders(MAE)[He +, CVPR22] – 画像をマスクして,予測 – RGBの画像のみで学習 -> 実際,Depth等が取れる状況は多いはず • MultiMAE – RGB, Depth, Semantic Segmentationにおける画像で学習 – より多様なタスクへの効率的な転移を目指す 3
提案手法:MultiMAE 4 Multi-Modal Multi-Task
構造①:RGB画像から各モダリティの疑似画像を作成 • Depth – Omnidata[Ainaz+, ICCV21] で学習した DPT-Hybrid[Rene, ICCV21] で予測
• Semantic Segmentation – COCO[Tsung, ECCV14] で学習した Mask2Former[Bowen, CVPR22] で予測 5
構造②:全特徴量を一つのEncoderに入力 • 各画像を16×16のパッチに分割 • マスクするパッチを選択 – ディリクレ分布によって,各モダリ ティから獲得するパッチ数を決定 – 一様分布によって,各画像からパッチ
を選択 • それぞれの特徴量をconcatして入力 – Visible tokens(=マスクされていない) のみ利用 6
構造③:浅いDecoderによって学習 • 浅いDecoderを用いることで,計算量を削減 – トークンを256次元にして,2層のTransformer BlockによりSelf-Attention 7
構造④:3つのタスクにおける損失を計算 • RGB – マスクされたトークンのみでMSE – MAEと同様 • Depth –
L1 loss • Semantic Segmentation – Cross-entropy 8
実験設定:3つの下流タスクで評価 1. Classification • Top-1 accuracyで評価 2. Semantic Segmentation •
mIoUで評価 3. Dense Regression Tasks • NYUv2データセットにおける𝛿1 で評価 • Depth値がthreshouldを下回るピクセル の割合(%) 9 今回は1.25 Fine-tuning用データセット – ImageNet-1K [Jia+, CVPR09] – ADE20K [Bolei+, CVPR17] – Hypersim [Mike+, ICCV21] – NYUv2 [Nathan+, ECCV12] – Taskonomy [Amir+, CVPR18] 事前学習 データセット:1.28M ImageNet GPU:8 A100 GPUs 学習時間:6.0 min / epoch
定量結果:既存手法と同等かそれ以上の性能 • RGB画像のみでfine-tuning • • RGBとDepthのGTでfine-tuning 10 C, S, Dは各タスク
の頭文字 MAEはDepthでは 事前学習されていない
定量結果:既存手法と同等かそれ以上の性能 • 疑似ラベルの使用により性能上昇 • Taskonomy [Amir+, CVPR18] – 転移学習のしやすさを調べる –
評価は9タスクにおける評価のランキング 平均 11
定性結果:各タスクにおいて,高性能な画像生成 • 特にDepth, Semantic Segmentationについて高性能 12
定性結果:単一モーダル画像による入力 13
Demo • URL : https://huggingface.co/spaces/EPFL-VILAB/MultiMAE 14
まとめ: • 背景 – 扱いやすく,様々なタスクに応用できる画像の事前学習モデルを目指す • 提案手法:MultiMAE – Multi-modalな画像を入力し,Multi-taskに学習 –
データセットを疑似的に作成 • 結論 – 各タスクにおいて,MAEと同等,もしくは上回る評価 15
Appendix:ハイパラ設定 • Pre-train 16 • FT on ImageNet-1K
Appendix:ディリクレ分布 17
Appendix:Taskonomyの9タスク • L1 lossで評価 18