Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]MultiMAE: Multi-modal Multi-task ...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
October 31, 2022
Technology
0
420
[Journal Club]MultiMAE: Multi-modal Multi-task Masked Autoencoders (ECCV22)
Semantic Machine Intelligence Lab., Keio Univ.
PRO
October 31, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
39
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
78
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
120
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
72
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
170
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
120
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
100
[RSJ25] Everyday Object Manipulation Based on Scene Text-Aware Multimodal Retrieval
keio_smilab
PRO
1
93
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
160
Other Decks in Technology
See All in Technology
Claude Code 10連ガチャ
uhyo
1
290
[AWS 秋のオブザーバビリティ祭り 2025 〜最新アップデートと生成 AI × オブザーバビリティ〜] Amazon Bedrock AgentCore で実現!お手軽 AI エージェントオブザーバビリティ
0nihajim
2
1.6k
Sansan BIが実践する AI on BI とセマンティックレイヤー / data_summit_findy
sansan_randd
0
120
Boxを“使われる場”にする統制と自動化の仕組み
demaecan
0
240
バグと向き合い、仕組みで防ぐ
____rina____
0
190
AWS 環境で GitLab Self-managed を試してみた/aws-gitlab-self-managed
emiki
0
350
データ組織ゼロから投資を得るまでの軌跡と未来図 〜AIの前にやるべきこと〜 / Building a Data Organization from Scratch: The Journey to Securing Investment and a Vision for the Future
kaonavi
0
110
DMARCは導入したんだけど・・・現場のつぶやき 〜 BIMI?何それ美味しいの?
hirachan
1
180
us-east-1 の障害が 起きると なぜ ソワソワするのか
miu_crescent
PRO
1
220
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
次世代のメールプロトコルの斜め読み
hirachan
3
450
re:Invent完全攻略ガイド
junjikoide
0
140
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building Adaptive Systems
keathley
44
2.8k
Being A Developer After 40
akosma
91
590k
Become a Pro
speakerdeck
PRO
29
5.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Faster Mobile Websites
deanohume
310
31k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Site-Speed That Sticks
csswizardry
13
960
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
How STYLIGHT went responsive
nonsquared
100
5.9k
Transcript
MultiMAE: Multi-modal Multi-task Masked Autoencoders 慶應義塾大学 杉浦孔明研究室 飯岡 雄偉 Roman
Bachmann, David Mizrahi, Andrei Atanov, Amir Zamir, Institute of Technology Lausanne (EPFL) Bachmann, R., Mizrahi, D., Atanov, A., & Zamir, A. (2022). MultiMAE: Multi-modal Multi-task Masked Autoencoders. In ECCV.
概要:MultiMAE 2 • 様々なタスクに遷移しやすい事前学習モデル • 複数モダリティにおける画像を入力 – RGB, Depth, Semantic
Segmentation • 各モダリティごとに出力 – それぞれ疑似的にGTを作成 – タスクごとに損失を算出 https://multimae.epfl.ch/
研究背景:扱いやすい画像特徴量の事前学習モデル • BERT[Jacob+, NAACL19] – 文をマスクして,予測 – 言語特徴量の事前学習モデルとしてbreak through •
Masked Autoencoders(MAE)[He +, CVPR22] – 画像をマスクして,予測 – RGBの画像のみで学習 -> 実際,Depth等が取れる状況は多いはず • MultiMAE – RGB, Depth, Semantic Segmentationにおける画像で学習 – より多様なタスクへの効率的な転移を目指す 3
提案手法:MultiMAE 4 Multi-Modal Multi-Task
構造①:RGB画像から各モダリティの疑似画像を作成 • Depth – Omnidata[Ainaz+, ICCV21] で学習した DPT-Hybrid[Rene, ICCV21] で予測
• Semantic Segmentation – COCO[Tsung, ECCV14] で学習した Mask2Former[Bowen, CVPR22] で予測 5
構造②:全特徴量を一つのEncoderに入力 • 各画像を16×16のパッチに分割 • マスクするパッチを選択 – ディリクレ分布によって,各モダリ ティから獲得するパッチ数を決定 – 一様分布によって,各画像からパッチ
を選択 • それぞれの特徴量をconcatして入力 – Visible tokens(=マスクされていない) のみ利用 6
構造③:浅いDecoderによって学習 • 浅いDecoderを用いることで,計算量を削減 – トークンを256次元にして,2層のTransformer BlockによりSelf-Attention 7
構造④:3つのタスクにおける損失を計算 • RGB – マスクされたトークンのみでMSE – MAEと同様 • Depth –
L1 loss • Semantic Segmentation – Cross-entropy 8
実験設定:3つの下流タスクで評価 1. Classification • Top-1 accuracyで評価 2. Semantic Segmentation •
mIoUで評価 3. Dense Regression Tasks • NYUv2データセットにおける𝛿1 で評価 • Depth値がthreshouldを下回るピクセル の割合(%) 9 今回は1.25 Fine-tuning用データセット – ImageNet-1K [Jia+, CVPR09] – ADE20K [Bolei+, CVPR17] – Hypersim [Mike+, ICCV21] – NYUv2 [Nathan+, ECCV12] – Taskonomy [Amir+, CVPR18] 事前学習 データセット:1.28M ImageNet GPU:8 A100 GPUs 学習時間:6.0 min / epoch
定量結果:既存手法と同等かそれ以上の性能 • RGB画像のみでfine-tuning • • RGBとDepthのGTでfine-tuning 10 C, S, Dは各タスク
の頭文字 MAEはDepthでは 事前学習されていない
定量結果:既存手法と同等かそれ以上の性能 • 疑似ラベルの使用により性能上昇 • Taskonomy [Amir+, CVPR18] – 転移学習のしやすさを調べる –
評価は9タスクにおける評価のランキング 平均 11
定性結果:各タスクにおいて,高性能な画像生成 • 特にDepth, Semantic Segmentationについて高性能 12
定性結果:単一モーダル画像による入力 13
Demo • URL : https://huggingface.co/spaces/EPFL-VILAB/MultiMAE 14
まとめ: • 背景 – 扱いやすく,様々なタスクに応用できる画像の事前学習モデルを目指す • 提案手法:MultiMAE – Multi-modalな画像を入力し,Multi-taskに学習 –
データセットを疑似的に作成 • 結論 – 各タスクにおいて,MAEと同等,もしくは上回る評価 15
Appendix:ハイパラ設定 • Pre-train 16 • FT on ImageNet-1K
Appendix:ディリクレ分布 17
Appendix:Taskonomyの9タスク • L1 lossで評価 18