Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural...
Search
Kenta Sasaki
April 17, 2019
Technology
1
1.3k
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural language processing and machine learning in Globis
Kenta Sasaki
April 17, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
JavaScript 研修
recruitengineers
PRO
5
1.2k
Kubernetes における cgroup v2 でのOut-Of-Memory 問題の解決
pfn
PRO
0
380
Oracle Cloud Infrastructure:2025年8月度サービス・アップデート
oracle4engineer
PRO
0
130
Yahoo!広告ビジネス基盤におけるバックエンド開発
lycorptech_jp
PRO
1
320
異業種出身エンジニアが気づいた、転向して十数年経っても変わらない自分の武器とは
macnekoayu
0
230
Vault meets Kubernetes
mochizuki875
0
140
攻撃と防御で実践するプロダクトセキュリティ演習~導入パート~
recruitengineers
PRO
3
1.5k
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
110
モダンフロントエンド 開発研修
recruitengineers
PRO
8
5.3k
AIエージェント就活入門 - MCPが履歴書になる未来
eltociear
0
670
制約理論(ToC)入門
recruitengineers
PRO
8
3.4k
アジャイルテストで高品質のスプリントレビューを
takesection
0
140
Featured
See All Featured
How to Ace a Technical Interview
jacobian
279
23k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
BBQ
matthewcrist
89
9.8k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Into the Great Unknown - MozCon
thekraken
40
2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Building an army of robots
kneath
306
46k
Transcript
© GLOBIS All rights reserved. グロービスでの⾃然⾔語処理、 機械学習の活⽤事例 佐々⽊ 健太 2019/04/17
⾃⼰紹介 1. 東芝 2. リクルート 3. クックパッド 4. グロービス(グロービスAI経営教育研究所) Ø
データ分析、機械学習を使ったサービス開発 Ø 良い教育とは︖教育効果とは︖などに関する研究 -2- © GLOBIS All rights reserved.
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -3- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -4- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB 機械学習(教師あり)を使い 回答を採点。採点といっても、 正解と不正解に分類するだけ。 学習者への適切なフィードバックは、学習効果を⾼めることが既存 研究で確認されている。
機械学習(教師あり)のアルゴリズム • アテンション付きLSTMを利⽤ • 単語の分散表現(ベクトル)をネットワークの⼊⼒とする -5- © GLOBIS All rights
reserved. 回答 分散表現 LSTM 若者 や 家族 い た 。 … … … Attention 正誤判定
採点結果サンプル -6- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。)
採点結果サンプル -7- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。) 回答に、 ・なるべく安く旅⾏したい⼈達 ・旅費を抑えたい⼈達 ・何でも低価格を好む⼈達 などの「値段」「価格」に関する要素が⼊っていれば正解。
採点結果サンプル • 正誤だけでなく、正誤の判定に影響したキーワードも分かる -8- © GLOBIS All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -9- © GLOBIS
All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -10- © GLOBIS
All rights reserved. ⼈によって採点結果が変わる回答例 1. 価格に敏感な⼈達 2. スーパーで1円でも安く買おうとする主婦 3. 仕事の出張では値段を気にしないのに、個⼈で旅⾏する 時は少しでも安く済ませようとする⼈達
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -11- © GLOBIS
All rights reserved. Slackで重要性を説く、 Kibelaに機械学習の誤 採点の例を載せるなど、 地道な啓蒙活動あるのみ。
サービス化 • グロービス学び放題の⼀部ユーザにテスト公開中 -12- © GLOBIS All rights reserved.
最後に • We are hiring!! -13- © GLOBIS All rights
reserved.