Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural...
Search
Kenta Sasaki
April 17, 2019
Technology
1
1.3k
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural language processing and machine learning in Globis
Kenta Sasaki
April 17, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
140
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
570
プロポーザルに込める段取り八分
shoheimitani
1
630
Context Engineeringの取り組み
nutslove
0
380
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
840
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
770
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
340
Featured
See All Featured
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
55
From π to Pie charts
rasagy
0
130
For a Future-Friendly Web
brad_frost
182
10k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Building Applications with DynamoDB
mza
96
6.9k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
200
How to Ace a Technical Interview
jacobian
281
24k
Prompt Engineering for Job Search
mfonobong
0
160
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Transcript
© GLOBIS All rights reserved. グロービスでの⾃然⾔語処理、 機械学習の活⽤事例 佐々⽊ 健太 2019/04/17
⾃⼰紹介 1. 東芝 2. リクルート 3. クックパッド 4. グロービス(グロービスAI経営教育研究所) Ø
データ分析、機械学習を使ったサービス開発 Ø 良い教育とは︖教育効果とは︖などに関する研究 -2- © GLOBIS All rights reserved.
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -3- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -4- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB 機械学習(教師あり)を使い 回答を採点。採点といっても、 正解と不正解に分類するだけ。 学習者への適切なフィードバックは、学習効果を⾼めることが既存 研究で確認されている。
機械学習(教師あり)のアルゴリズム • アテンション付きLSTMを利⽤ • 単語の分散表現(ベクトル)をネットワークの⼊⼒とする -5- © GLOBIS All rights
reserved. 回答 分散表現 LSTM 若者 や 家族 い た 。 … … … Attention 正誤判定
採点結果サンプル -6- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。)
採点結果サンプル -7- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。) 回答に、 ・なるべく安く旅⾏したい⼈達 ・旅費を抑えたい⼈達 ・何でも低価格を好む⼈達 などの「値段」「価格」に関する要素が⼊っていれば正解。
採点結果サンプル • 正誤だけでなく、正誤の判定に影響したキーワードも分かる -8- © GLOBIS All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -9- © GLOBIS
All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -10- © GLOBIS
All rights reserved. ⼈によって採点結果が変わる回答例 1. 価格に敏感な⼈達 2. スーパーで1円でも安く買おうとする主婦 3. 仕事の出張では値段を気にしないのに、個⼈で旅⾏する 時は少しでも安く済ませようとする⼈達
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -11- © GLOBIS
All rights reserved. Slackで重要性を説く、 Kibelaに機械学習の誤 採点の例を載せるなど、 地道な啓蒙活動あるのみ。
サービス化 • グロービス学び放題の⼀部ユーザにテスト公開中 -12- © GLOBIS All rights reserved.
最後に • We are hiring!! -13- © GLOBIS All rights
reserved.