Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural...
Search
Kenta Sasaki
April 17, 2019
Technology
1
1.3k
グロービスでの自然言語処理、機械学習の活用事例 / An example of natural language processing and machine learning in Globis
Kenta Sasaki
April 17, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
1k
「現場で活躍するAIエージェント」を実現するチームと開発プロセス
tkikuchi1002
3
320
今だから言えるセキュリティLT_Wordpress5.7.2未満を一斉アップデートせよ
cuebic9bic
2
170
ABEMAの本番環境負荷試験への挑戦
mk2taiga
5
1.3k
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
800
SREの次のキャリアの道しるべ 〜SREがマネジメントレイヤーに挑戦して、 気づいたこととTips〜
coconala_engineer
1
4.3k
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
580
全部AI、全員Cursor、ドキュメント駆動開発 〜DevinやGeminiも添えて〜
rinchsan
10
5.1k
データ戦略部門 紹介資料
sansan33
PRO
1
3.3k
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
240
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
110
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
120
Featured
See All Featured
Building Applications with DynamoDB
mza
95
6.5k
How to Ace a Technical Interview
jacobian
278
23k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Six Lessons from altMBA
skipperchong
28
3.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
108
19k
The Language of Interfaces
destraynor
158
25k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
The Invisible Side of Design
smashingmag
301
51k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Transcript
© GLOBIS All rights reserved. グロービスでの⾃然⾔語処理、 機械学習の活⽤事例 佐々⽊ 健太 2019/04/17
⾃⼰紹介 1. 東芝 2. リクルート 3. クックパッド 4. グロービス(グロービスAI経営教育研究所) Ø
データ分析、機械学習を使ったサービス開発 Ø 良い教育とは︖教育効果とは︖などに関する研究 -2- © GLOBIS All rights reserved.
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -3- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB
次世代のe-learningシステムの開発 • 記述式問題において、回答によってフィードバックが換わる -4- © GLOBIS All rights reserved. 従来のe-learning
次世代のe-learning Aさんの回答 Bさんの回答 Cさんの回答 全員に同じフィードバック(FB) Aさんの回答 Bさんの回答 Cさんの回答 Aさん向け FB Bさん向け FB Cさん向け FB 機械学習(教師あり)を使い 回答を採点。採点といっても、 正解と不正解に分類するだけ。 学習者への適切なフィードバックは、学習効果を⾼めることが既存 研究で確認されている。
機械学習(教師あり)のアルゴリズム • アテンション付きLSTMを利⽤ • 単語の分散表現(ベクトル)をネットワークの⼊⼒とする -5- © GLOBIS All rights
reserved. 回答 分散表現 LSTM 若者 や 家族 い た 。 … … … Attention 正誤判定
採点結果サンプル -6- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。)
採点結果サンプル -7- © GLOBIS All rights reserved. 問題例 格安航空会社がターゲットにしているのはどんな⼈達で、 普段はどんな交通⼿段を利⽤していたかを考えてください。
(50⽂字以内で記述してください。) 回答に、 ・なるべく安く旅⾏したい⼈達 ・旅費を抑えたい⼈達 ・何でも低価格を好む⼈達 などの「値段」「価格」に関する要素が⼊っていれば正解。
採点結果サンプル • 正誤だけでなく、正誤の判定に影響したキーワードも分かる -8- © GLOBIS All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -9- © GLOBIS
All rights reserved.
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -10- © GLOBIS
All rights reserved. ⼈によって採点結果が変わる回答例 1. 価格に敏感な⼈達 2. スーパーで1円でも安く買おうとする主婦 3. 仕事の出張では値段を気にしないのに、個⼈で旅⾏する 時は少しでも安く済ませようとする⼈達
機械学習を導⼊するにあたって困難だった点 • 質の⾼い教師データの確保 • 採点者によって採点結果が異なる • 採点者に教師データの重要性を理解してもらう -11- © GLOBIS
All rights reserved. Slackで重要性を説く、 Kibelaに機械学習の誤 採点の例を載せるなど、 地道な啓蒙活動あるのみ。
サービス化 • グロービス学び放題の⼀部ユーザにテスト公開中 -12- © GLOBIS All rights reserved.
最後に • We are hiring!! -13- © GLOBIS All rights
reserved.