Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
カーネル関数とは
Search
kichinosukey
January 14, 2019
Science
0
54
カーネル関数とは
kichinosukey
January 14, 2019
Tweet
Share
More Decks by kichinosukey
See All by kichinosukey
Latin Hypercube Sampling
kichinosukey
0
73
Lasso.pdf
kichinosukey
0
56
NSGAII
kichinosukey
0
50
NSGA
kichinosukey
0
55
基底関数回帰の概要について
kichinosukey
0
77
児童虐待の現状
kichinosukey
0
61
イノベーションのジレンマとフィンテック
kichinosukey
0
73
Paxos made simpleを理解しよう
kichinosukey
0
510
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.2k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
200
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
機械学習 - SVM
trycycle
PRO
1
950
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
150
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
440
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.5k
検索と推論タスクに関する論文の紹介
ynakano
1
110
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
力学系から見た現代的な機械学習
hanbao
3
3.7k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
190
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
520
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
970
What's in a price? How to price your products and services
michaelherold
246
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Limits of Empathy - UXLibs8
cassininazir
1
190
sira's awesome portfolio website redesign presentation
elsirapls
0
91
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
260
Transcript
Χʔωϧؔͱ
ࢀߟॻ੶ w ΄΅ࣸܦ͍͖ͤͯͨͩ͞·͠ ͨ w ͱͯΘ͔Γқ͍༰Ͱײँ Ͱ͢ w IUUQTXXXJXBOBNJDPKQ CPPLCIUNM
ಛநग़ʹ͍ͭͯ ↟ᏣͺͼΝᤎ᷀ᔻṟϧόϰͽͶ͖ວ͚Ν ↟ͥΞᬿᔻ᧣ͼؔΤᬤͶᦉᷯͩ͝ϧόϰặ͟ͼ͖ ↟ΚΜີᮈၞḄᙚΤᑿͥ͘ͺΤວ͚Νͺ ↟EᮈᡯfᓓᙚᑤᔻṟͲ͞fϖϮϦ⑲τ⑲XͽͶ͖ᔻṟ y = wTx f(x) =
d ∑ m=1 wm xm ⋯ (1)
ಛநग़ʹ͍ͭͯ ↟ጽͽYͽ᷁͝ᨷΐ͵ͱᑤᔻṟมỐΤᙇͩີᮈͽࣸᓕͫΝͥͺΤ|ᴰ ᱢᲇ}ͺṺΈ ↟ᴰϞδύϰΤᤎ᷀Κ͘ͽᔉ͡ͺͫΝ ↟ͫΝͺ ᙚᴰϞδύϰᤎ᷀ͺͼΝ ඇઢܗม ೖྗY ಛϕΫτϧП
Y ϕ(x) = (ϕ1 (x), ⋯, ϕd (x))T ϕ(x) = (x, x2, x3, ⋯, xd)T
ಛநग़ʹ͍ͭͯ ↟ᴰᱢᲇͧΞͱ໖ණͽ͖͜fᔻṟϧόϰΤວ͚Νͺ ↟ͥວ͚ፖᔟ͝Λϖτ⑲ϸ᤹ᙣᐠᛯ᤹ᬰͧΞ͟ͱ ↟ᴰᱢᲇϦϯψύΐͺΓΝͺᤎ᷀Ͷ ↟ᏝࡶͼؔؔΤ࣮ḿ͟Ν ↟ᡯ᥍ᅪY࣮͞Ϟδύϰ͔Νᶶ᠓͞ͼ͖ ↟ᴰϞδύϰ࣮͞ϞδύϰͼͱΓY͞የᥙᅾΖεϮϚཋ᪦Δᅔ͖ fw (x) =
wTϕ(x) = d ∑ m=1 wm ϕm (x) ⋯ (2)
Χʔωϧؔͷఆٛ ↟Y Ysͺ͖͘ᤍͶมͽରͩΰ⑲ϒϰؔL Y Ys ͯΞͰΞ ᧤Ẹͺͩᤎ᷀Κ͘ͽᨷᤅͧΞΝ ↟ ᙚĘมၞḄᙚfᓓᙚΤͽᤎ᷀Κ͘ͽဒᘥ͟Ν
k(x, x′) = ϕ(x)Tϕ(x′) = d ∑ m=1 ϕm (x)ϕm (x′) ⋯ (3) k(x, x′) = d ∑ m=1 xm(x′)m ⋯ (4)
֤छͷΧʔωϧಋೖʹ͍ͭͯ ↟᧤ ↟ᩆᨷᲩᕥ ↟ệᖰᐠᵿď࿆ỹᕭᅊĐ
ੵͷΧʔωϧදݱ ↟ȃ Y ͺϖϮϦ⑲τ᧤͔Ν ᙚfᚌᐠၞ͡Y Y hhhΤ᧱ ͽᕅΈͺᤎ᷀ṟ࿄ᑾͫΝͥͺ͟͞Ν ↟ΰ⑲ϒϰؔᴰϞδύϰ᧤fଈͳᤎ᷀ᨷᤅͧΞΝ
↟ͥΞfϖϮϦ⑲τ⑲XΤᤎ᷀ṟͽᷟᨷ͟ΝͥͺΤዳͫΝ f(x) = ∑ i αi k(xi , x) ⋯ (5) f(x) = ∑ i αi ϕ(xi )Tϕ(x) ⋯ (6) w = ∑ i αi ϕ(xi )
ੵͷΧʔωϧදݱ ↟ ᙚ|ᚌᐠၞ͡}ᨨY@Jΰ⑲ϒϰؔᔻṟẸͩ͝ͼ͖ ↟κϸϜϰᨨᔻṟẸṟᔉ͡ͱΓͽĦ ↟͔ΝᴰᎭͼᩆ᳀ặΤḝͥ͘ͺfᤎ᷀Κ͘ͼဒᘥ͞൱ၙͺͼΝ ↟ϯϜϱρϸτ⑲ᨷሑďᕭᅊĐf-ϓϰϥΤᑿ͘ ↟OEᦉᷯfXႚΡΜͽEΤᠭ͖ΝͥͺϖϮϦ⑲τΤවΛͫͥͺ͟͞Ν ↟FY ᮈ༜ṹᥭᠭḄࠐΑၞḄᙚΘ͘ͽᮈᡯ͞ᯭͺͼΝͱΓfޮໝΤൃἿͫΝ
f(x) = n ∑ i=1 αi k(x(i), x) = n ∑ i=1 αi d ∑ m=1 (x(i))mxm ⋯ (7)
ਖ਼ఆੑ͔ΒͷΧʔωϧؔ ಋೖ ↟᧤ᕥ᭳͝Λfΰ⑲ϒϰؔᴰᅗͱͺ͟YͺYsᇮᑾ ႷΤᶡ͖ͩΝͺວ͚ΛΞΝ ↟ჯͪፖḟΤḟ͖͖Νͺ͟ͽႝ͟͡ͼΜfᬿ༜ͫΝͺͽͼΝ ↟ᝂͽYͺYsᇮᑾႷΤᶡͫΚ͘ͼؔL Y Ys ͔͞Νͺ͟ͽfͯΞΤ ΰ⑲ϒϰؔͺͩᑿ͚ͼ͖͝Ħ
↟|ᩆᨷᲩᕥ}ΤຬͱͭZFT
ਖ਼ఆੑ ↟͔ΝؔL Y Ys ͞ᩆᨷᲩ͔Νͺf᥅O෪ᨨY@ hhh Y@O ͝ΛຌᒿͧΞΝᤎ᷀ḝᅾďεϮϥḝᅾĐ͔͞Ν ↟ͥΞͽͶ͖ęᮈṟᙚ͞ᓝͽᑤᐔ͔Νͺ͟fᤎ᷀ᙚ͞᥅O ᮈϞδύϰǯ
ǯ@ hhh ǯ@O ?5ͽͶ͖ᕧΜርͶͥͺ͔Νďᩆͩ ͡ጪᩆᨷᲩᕥĐ K = k(x1 , x1 ) k(x2 , x1 ) ⋯ k(xn , x1 ) k(x1 , x2 ) k(x2 , x2 ) ⋯ k(xn , x2 ) ⋮ ⋮ ⋱ ⋮ k(x1 , xn ) k(x2 , xn ) ⋯ k(xn , xn ) n ∑ i=1 n ∑ j=1 αi αj Kij ≥ 0 ⋯ (8)
ΧʔωϧτϦοΫ ↟طͽᩆᨷᬰᕥΤຬͱͫͥͺ͞Ρ͝͵͖ΝؔΤᑿ͚f᧤ຌᒿ͞Ᏽ᠓ͽͼΝ Ħďᤎ᷀ἦᥥζ⑲ξͽͶ͖Đ ↟ᴰϞδύϰ᧤ͺͩᨷᤅͩͱΰ⑲ϒϰ|ᩆᨷᲩ}͔Ν ↟ᝂͽf᥅ᩧᨷᲩؔL Y Ys ͞ରশ L Y
Ys L Ys Y ͔ΞͯΞ|ᴰϞδύϰ ᧤}͔Ν ↟ͥΞᦉᷯͽΚ͵ᷟᮈᡯᴰϞδύϰ᧤͞ඦ୯ͼؔͽͼΝᦉᷯ͞ ͔Ν ↟ͶΐΜfᩆᨷᲩᕥΤΰ⑲ϒϰᨷᤅͺͫΞຌᒿᅗΤවΛͭΝͥͺ͟͞Ν ↟ͥΞΤ|ΰ⑲ϒϰύϯψδ}ͺ͖͘
ΨεΧʔωϧ ↟༺ମᆚ ↟ᩆྥᐠᵿጓႷؔͺჯͪṟ ↟αΫξΰ⑲ϒϰͺṺΈͥͺΔ͔Ν ↟ͥΞᴰϞδύϰණฌሜ᧤ͺͩᶡḿ͟Ν ↟ᩆᨷᲩᕥΔຬͱͫďᕭᅊĐ k(x, x′) = exp(−β∥x
− x′∥2) ⋯ (9)
ଟ߲ࣜΧʔωϧ ↟αΫξΰ⑲ϒϰͺჯ༷ͽfΚ͡ᑿΡΞΝ ↟Qᥦ D∕ ↟ፖfͥᙚΤᤎ᷀ṟͽ᧾ͫΝͺE?Qί⑲υ⑲ಠርͼḄẸ ͺͩᔉͣΝ k(x, x′) = (xT
x′+ c)P ⋯ (10) k(x, x′) = p ∑ m=0 ( p m) { d ∑ l=1 (xl x′ l ) } m cp−m ⋯ (11)
֤Χʔωϧͷಛ w ϊΠζΛͤͨਖ਼ݭʹର͢ΔϑΟο ςΟϯάΛ֤ΧʔωϧͰ࣮ࢪ w ্ஈͰY< >ͷൣғͷϑΟοςΟ ϯάΛ֬ೝ͍ͯ͠Δ͕େ͖ͳࠩҟ ݟΒΕͳ͍ w
͔͠͠ɺԼஈͰֶशσʔλͷൣ ғ֎Λ༧ଌͤ͞Δͱɺଟ߲ࣜൃ ࢄํɺ3#'ऩଋ͢Δํ ͱ͔͏ w IUUQTHJTUHJUIVCDPN LJDIJOPTVLFZ