Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tokyo.R #96 theory of probability
Search
kilometer
January 29, 2022
Technology
5
2.9k
Tokyo.R #96 theory of probability
第96回Tokyo.Rでトークした際の資料です。
kilometer
January 29, 2022
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
860
TokyoR109.pdf
kilometer
1
450
TokyoR#108_NestedDataHandling
kilometer
0
770
TokyoR#107_R_GeoData
kilometer
0
410
SappoRo.R_roundrobin
kilometer
0
130
TokyoR#104_DataProcessing
kilometer
1
680
TokyoR#103_DataProcessing
kilometer
0
870
TokyoR#102_RMarkdown
kilometer
1
630
TokyoR#101_RegressionAnalysis
kilometer
0
370
Other Decks in Technology
See All in Technology
Docker Desktop で Docker を始めよう
zembutsu
PRO
0
140
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
2.3k
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
200
Bring Your Own Container: When Containers Turn the Key to EDR Bypass/byoc-avtokyo2024
tkmru
0
840
信頼されるためにやったこと、 やらなかったこと。/What we did to be trusted, What we did not do.
bitkey
PRO
0
2.1k
商品レコメンドでのexplicit negative feedbackの活用
alpicola
1
330
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
2.1k
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
960
エンジニアリングマネージャー視点での、自律的なスケーリングを実現するFASTという選択肢 / RSGT2025
yoshikiiida
4
3.6k
Evolving Architecture
rainerhahnekamp
3
250
機械学習を「社会実装」するということ 2025年版 / Social Implementation of Machine Learning 2025 Version
moepy_stats
4
860
Featured
See All Featured
Making Projects Easy
brettharned
116
6k
The Invisible Side of Design
smashingmag
299
50k
Designing for Performance
lara
604
68k
Producing Creativity
orderedlist
PRO
343
39k
For a Future-Friendly Web
brad_frost
176
9.5k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Mobile First: as difficult as doing things right
swwweet
222
9k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Faster Mobile Websites
deanohume
305
30k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Transcript
@kilometer00 2022.01.29 確率論の基礎 95th #TokyoR
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: むし社
宣伝!!(書籍の翻訳に参加しました。)
𝑋 ~ 𝑁(µ = 0, σ = 1) 「確率変数𝑋 は正規分布𝑁(0,1)に従う」
を完全に理解しよう。 【今⽇の⽬標】
よく⾒る式(正規分布といえばコレ) 𝑝 𝑥 = 1 2πσ! exp −(𝑥 − µ)!
2σ!
よく⾒る式(正規分布といえばコレ) 𝑝 𝑥 = 1 2πσ! exp −(𝑥 − µ)!
2σ! 標準偏差σ 平均µ
よく⾒る式(正規分布といえばコレ) 𝑝 𝑥 = 1 2πσ! exp −(𝑥 − µ)!
2σ! 標準偏差σ 平均µ あなたはだあれ?
Norm_p <- function(x, mu = 0, sigma = 1){ p
<- (1 / sqrt(2 * pi * sigma^2)) * exp(- (x - mu)^2 / (2 * sigma^2)) return(p) } よく⾒る式を計算する関数を作る
よく⾒る式を計算する library(package = "tidyverse") dat <- seq(from = -4, to
= 4, by = 0.1) %>% data.frame(x = .) %>% mutate(p = Norm_p(x)) # ここで計算してる
よく⾒る式を可視化する library(package = "tidyverse") dat <- seq(from = -4, to
= 4, by = 0.1) %>% data.frame(x = .) %>% mutate(p = Norm_p(x)) # ここで計算してる ggplot(data = dat) + aes(x = x, y = p) + geom_path(color = "magenta")
よく⾒る式=よく⾒るグラフだった
よく⾒る式=よく⾒るグラフだった あなたはだあれ?
よく⾒る式=よく⾒るグラフだった あなたはだあれ? 𝒙 = 𝟎の確率は 約𝟎. 𝟒??
よく⾒る式=よく⾒るグラフだった あなたはだあれ? 𝒙 = 𝟎の確率は 約𝟎. 𝟒 ではなくて
よく⾒る式=よく⾒るグラフだった あなたはだあれ? 𝒙 = 𝟎の確率は ゼロ
よく⾒る式=よく⾒るグラフだった あなたはだあれ? 𝒙 = 𝟎の確率は ゼロ
写像 理解 【今⽇の地図】
初⼿:写像
集合𝑋 集合𝑌 要素𝑥 要素𝑦 写像 𝑓: 𝑋 → 𝑌もしくは𝑓: 𝑥
⟼ 𝑦 (始集合・定義域) (終集合・終域) 【写像】 ある集合の要素を他の集合のただ1つの要素に 対応づける規則
地図空間 ⽣物種名空間 名空間 ⾦銭価値空間 (円) ⾦銭価値空間 (ドル) コーヒー ¥290 $2.53
[緯度, 経度] Homo sapiens 実存 写像 写像 写像 写像 写像 写像 情報 【写像】 ある集合の要素を他の集合のただ1つの要素に対応づける規則
𝑓: 𝑥 ↦ 𝑦 もしくは 𝑓 𝑥 = 𝑦 𝑥
= 2 𝑦 = 8 𝑋 𝑌 【写像】 ある集合の要素を他の集合のただ1つの要素に対応づける規則 関数は写像
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑃 確率は特殊な枠組みを持った写像
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑃 【確率𝑝
】 ある事象ωについて写像𝑃により対応づけられた 集合[𝟎, 𝟏]の中のただ1つの実数(0 ≤ 𝑝 ≤ 1) 確率は特殊な枠組みを持った写像
写像 理解 確率測度 事象族 事象 【今⽇の地図】
へ の へ の へ も も へ の へのへのもへサイコロ
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω へ の も 事象 ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 写 像 𝑃 も へ の へのへのもへサイコロ
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω へ の も 事象族 𝓕 事象 ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 写 像 𝑃 も へ の へのへのもへサイコロ
事象族 ℱ
Encode Apple (Real) Apple (Information) Decode
Apple Encode Fruit Red 1 (image) Real Information
Apple Encode Fruit Red 1 (image) Real Information channel
地図空間 ⽣物種名空間 名空間 ⾦銭価値空間 (円) ⾦銭価値空間 (ドル) コーヒー ¥290 $2.53
[緯度, 経度] Homo sapiens 実存 写像 写像 写像 写像 写像 写像 情報 【写像】 ある集合の要素を他の集合のただ1つの要素に対応づける規則
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω へ の も 事象族 𝓕 事象 ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 写 像 𝑃 も へ の へのへのもへサイコロ
事象族 ℱは 写像のchannel
事象族𝓕が満たすべき譲れない5条件 1. 事象族ℱは全事象Ωの部分集合である ℱ ⊆ Ω 2. 空集合∅と全事象Ωは事象族ℱの要素である ∅, Ω
∈ ℱ 3. 事象族ℱは空集合∅であってはならない ℱ ≠ ∅ 4. 事象ωを要素に持つ時、その余事象) ωも要素である ω ∈ ℱ ⇒ ) ω ∈ ℱ 5. 要素同⼠の和集合も要素である ℱ = 𝜔!, . . . , 𝜔" ⇒ . #$! 𝜔# ∈ ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑃: ℱ
→ [0,1] 事象族 ℱ 事象族ℱが譲れない5条件を満たす → σ-加法族ℱと呼ぶ(σ-加法性を満たす)
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑷: ℱ
→ [0,1] 写像 𝑷が満たすべき譲れない3条件 σ-加法族 ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑷: ℱ
→ [0,1] 写像 𝑷が満たすべき譲れない3条件 1. 写像𝑃: ℱ → [0,1]もしくは𝑃: ω ⊆ Ω ↦ 𝑝 ∈ [0,1] σ-加法族 ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑷: ℱ
→ [0,1] 写像 𝑷が満たすべき譲れない3条件 1. 写像𝑃: ℱ → [0,1]もしくは𝑃: ω ⊆ Ω ↦ 𝑝 ∈ [0,1] 2. 全事象の確率𝑃(Ω) = 1 σ-加法族 ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑷: ℱ
→ [0,1] 写像 𝑷が満たすべき譲れない3条件 1. 写像𝑃: ℱ → [0,1]もしくは𝑃: ω ⊆ Ω ↦ 𝑝 ∈ [0,1] 2. 全事象の確率𝑃(Ω) = 1 3. 可算加法性を満たす σ-加法族 ℱ
∀ ω= ∩ ω> = ∅ (𝑖 ≠ 𝑗) ⇒
𝑃 - =?@ ω= = . =?@ 𝑃(ω= ) 可算加法性を満たす
∀ ω= ∩ ω> = ∅ (𝑖 ≠ 𝑗) ⇒
𝑃 - =?@ ω= = . =?@ 𝑃(ω= ) 互いに排反ならば、 可算加法性を満たす
可算加法性を満たす ∀ ω= ∩ ω> = ∅ (𝑖 ≠ 𝑗)
⇒ 𝑃 - =?@ ω= = . =?@ 𝑃(ω= ) 互いに排反ならば、 和事象の確率は、 事象の確率の和 (σ-加法性とか完全加法性ともいうけど同じもの)
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑷: ℱ
→ [0,1] 写像 𝑷が満たすべき譲れない3条件 1. 写像𝑃: ℱ → [0,1]もしくは𝑃: ω ⊆ Ω ↦ 𝑝 ∈ [0,1] 2. 全事象の確率𝑃(Ω) = 1 3. 可算加法性を満たす σ-加法族 ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 写像 𝑃: ℱ
→ [0,1] 写像 𝑃が満たすべき譲れない3条件 事象族ℱが満たすべき譲れない5条件 σ-加法族 ℱ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 写像 𝑃が譲れない3条件を満たす → 確率測度𝑃と呼ぶ 事象族ℱが譲れない5条件を満たす → σ-加法族ℱと呼ぶ(σ-加法性を満たす)
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃 σ-加法族
ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 全事象𝛀: 起こりうる全ての事象を網羅した集合 事象族𝓕: σ-加法性を満たし写像のchannelを規定する 確率測度𝑷: 事象ωに対し確率𝑝を対応づける写像
写像 理解 確率測度 事象族 事象 【今⽇の地図】
写像 確率測度 確率分布 事象族 確率変数 事象 理解 【今⽇の地図】
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω へ の も 事象族 ℱ 事象 ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 確 率 測 度 𝑃 -1点 0点 -1点 0点 3点 -1点 実数空間 𝑅 実現値 𝑥 写 像 𝑋
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 写像 𝑿: 𝜴 → 𝑹
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数 𝑿: 𝜴 → 𝑹
確率変数 は 写像 【写像】 ある集合の要素を他の集合のただ1つの要素に 対応づける規則
確率変数 は 写像 全事象Ωの要素(事象ω)を確率空間𝒫[Ω, ℱ, 𝑃]の 外側の実数集合𝑅のただ1つの要素(実現値𝑥)に 対応づける規則 全事象 Ω
実数集合 𝑅 事象 ω 実現値𝑥 確率変数 𝑋: ω ↦ 𝑥
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω へ の も 事象族 ℱ 事象 ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 確 率 測 度 𝑃 -1点 0点 -1点 0点 3点 -1点 実数空間 𝑅 実現値 𝑥 確 率 変 数 𝑋
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数 𝑿: 𝜴 → 𝑹
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数 𝑿: 𝜴 → 𝑹 対応づけられる?
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数 𝑿: 𝜴 → 𝑹 対応づけられる?
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数(写像) 𝑿: 𝜴 → 𝑹 逆写像 𝑿"𝟏: 𝒙 ∈ 𝑹 ↦ ω ∈ 𝓕 σ-加法族 ℱ
全事象 Ω 事象 ω 確率𝑝 確率測度 𝑃: ℱ → [0,1]
確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数(写像) 𝑋: 𝛺 → 𝑅 σ-加法族 ℱ 写像 𝒇: 𝒙 ↦ 𝒑 集合 [0,1] 𝑋!"
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 実現値𝑥 確率変数(写像) 𝑋: 𝛺 → 𝑅 𝑋!" 確率分布(写像) 𝒇: 𝒙 ↦ 𝒑 σ-加法族 ℱ
確率分布 は 写像 【写像】 ある集合の要素を他の集合のただ1つの要素に 対応づける規則
確率分布 は 写像 実数集合Rの要素(実現値𝑥)を集合[0,1]の ただ1つの要素(確率𝑝)に対応づける規則 実数集合 R 集合 [1,0] 実現値
𝑥 確率𝑝 確率分布 𝑓: 𝑥 ↦ 𝑝
確率分布 は 写像 実数集合Rの要素(実現値𝑥)を集合[0,1]の ただ1つの要素(確率𝑝)に対応づける規則 実数集合 R 集合 [1,0] 実現値
𝑥 確率𝑝 確率分布 𝑓: 𝑥 ↦ 𝑝 ただし、
確率分布 は 写像 実数集合Rの要素(実現値𝑥)を集合[0,1]の ただ1つの要素(確率𝑝)に対応づける規則 実数集合 R 集合 [1,0] 実現値
𝑥 確率𝑝 確率分布 𝑓: 𝑥 ↦ 𝑝 ただし、channelの規定が必要
Apple Encode Fruit Red 1 (image) Real Information channel
確率分布 は 写像 実数集合Rの要素(実現値𝑥)を集合[0,1]の ただ1つの要素(確率𝑝)に対応づける規則 実数集合 R 集合 [1,0] 確率𝑝
確率分布 𝑓: 𝑥 ↦ 𝑝 ただし、channel(族ℬ)の規定が必要 実現値𝑥 族 ℬ
確率分布 は 写像 実数集合 R 集合 [1,0] 確率𝑝 確率分布 𝑓:
𝑥 ↦ 𝑝 実現値𝑥 族 ℬ 族ℬが満たすべき譲れない5条件 → ボレルσ-加法族ℬと呼ぶ 実数集合上で定義されるσ-加法族をボレルσ-加法族と呼んで差し⽀えないが、 測度論的に厳密な定義にはもう少し⽤語の導⼊が必要になる。ボレル集合族ともいう。
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] 事象族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数空間 𝑅 実現値𝑥 確率変数(写像) 𝑋: 𝛺 → 𝑅 𝑋!" 確率分布(写像) 𝒇: 𝓑 → [𝟎, 𝟏] ボレルσ-加法族ℬ
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 確 率 分 布 𝑓 -1点 0点 -1点 0点 3点 -1点 実数空間 𝑅 実現値 𝑥 確 率 変 数 𝑋 -1点 0点 3点 事象族 ℬ
1. 写像という概念を導⼊しました 2. 確率測度と定義しました 3. 確率空間を定義しました 4. 実数空間(実現値)を導⼊しました 5. 実数空間と確率空間を写像で結びました
確率変数:事象から実現値への写像 確率分布:実現値から確率への写像 現在位置の確認 これにより「実現値に対する確率」を 考えることが出来るようになりました。 (ヨシッ!)
ふーん (それで?)
それでですね、
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 確率変数𝑋 𝑋!" 確率分布 𝑓: ℬ → [0,1] 実現値𝑥 ボレルσ-加法族ℬ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] σ-加法族ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 確率変数𝑋 𝑋!" 確率分布 𝑓: ℬ → [0,1] 実現値𝑥 ボレルσ-加法族ℬ
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃 σ-加法族
ℱ 確率空間𝒫[Ω, ℱ, 𝑃] 実数集合 𝑅 集合 [0,1] 実現値 𝑥 確率𝑝 確率分布 𝑓 ボレルσ-加法族 ℬ
お前はもう、 (ご唱和ください)
お前はもう、 確率空間だ。
実数集合 R 集合 [0,1] 実現値𝑥 確率𝑝 確率分布 𝑓 σ-加法族 ℬ
確率空間 𝒳[𝑅, ℬ, 𝑓] 全事象𝐑: 起こりうる全ての事象を網羅した集合 事象族𝓑: σ-加法性を満たし写像のchannelを規定する 確率分布𝒇: 実現値𝑥に対し確率𝑝を対応づける写像
全事象 Ω 集合 [0,1] 事象 ω 確率𝑝 確率測度 𝑃: ℱ
→ [0,1] 事象族 ℱ 確率空間 𝒫[Ω, ℱ, 𝑃] 実数空間 𝑅 確率変数𝑋 𝑋!" 確率分布 𝑓: ℬ → [0,1] 確率空間 𝒳[𝑅, ℬ, 𝑃] 実現値𝑥 族ℬ
確率分布𝑓が実数𝑥を確率𝑝に対応づける 確率空間𝒳[𝑅, ℬ, 𝑓]
確率空間𝒳[𝑅, ℬ, 𝑓] 確率変数𝑋による事象ωの実現値 確率分布𝑓が実数𝑥を確率𝑝に対応づける
確率空間𝒳[𝑅, ℬ, 𝑓] 確率変数𝑋による事象ωの実現値 確率空間 𝒫[Ω, ℱ, 𝑃] 確率分布𝑓が実数𝑥を確率𝑝に対応づける
確率変数𝑋による実現値𝑥は 確率分布𝑓に従って確率𝑝に 対応づけられる
確率変数𝑋による実現値𝑥は 確率分布𝑓に従って確率𝑝に 対応づけられる 確率変数𝑋による実現値𝑥は 確率分布𝑓に従って確率𝑝に 対応づけられるう
𝑋 ~ 𝑁(0, 1) 「確率変数𝑋 は正規分布𝑁(0,1)に従う」 確率変数𝑋による実現値𝑥は 正規分布𝑁に従って確率𝑝 に対応づけられる
宿題 あなたはだあれ? 𝒙 = 𝟎の確率は ゼロ
写像 確率測度 確率分布 事象族 確率変数 理解 【今⽇の地図】
写像 確率測度 確率分布 確率密度 事象族 確率変数 理解 連続確率 【今⽇の地図】
⾯ 1 : へ ⾯ 2 : の ⾯ 3
: へ ⾯ 4 : の ⾯ 5 : も ⾯ 6 : へ 全事象 Ω 集合[1,0] 確率 𝑝 1 2 1 3 1 6 確 率 分 布 𝑓 -1点 0点 -1点 0点 3点 -1点 実数空間 𝑅 実現値 𝑥 確 率 変 数 𝑋 -1点 0点 3点 事象族 ℬ
確率分布𝑓を可視化する 𝑝 = 𝑓 𝑥
・必ず1つの⾯が出る ・⾯は均等に出る ・各⾯には数値(実現値𝑥)が1つ書かれている ・ 𝑥 ∈ seq(form = 0, to
= 1, length = N) ・ 確率分布𝑓: 𝑥 ⟼ 𝑝すなわち𝑓 𝑥 = 𝑝とする 理想的なN⾯体サイコロ
理想的なN⾯体サイコロ 𝑝$ = 𝑓 𝑥$ = 1 6 𝑖 ∈
{1, 2, … , 6}
理想的なN⾯体サイコロ 𝑝$ = 𝑓 𝑥$ = 1 15 𝑖 ∈
{1, 2, … , 15}
理想的なN⾯体サイコロ 𝑖 ∈ {1, 2, … , ∞} 𝑝$ =
𝑓 𝑥$ = 1 ∞
理想的なN⾯体サイコロ 𝑝$ = 𝑓 𝑥$ = 1 ∞ = 0
𝑖 ∈ {1, 2, … , ∞} 𝑥$ ∈ [0,1] この区間に含まれる 実数全体
連続確率分布𝑓 実現値𝑥に対し確率𝑝を対応づける写像のうち 𝑥が連続した1つの区間[𝑎, 𝑏]で定義されるもの。 ただし(𝑎, 𝑏 ∈ 𝑅, 𝑎 <
𝑏)を満たす。
連続確率分布𝑓 実現値𝑥に対し確率𝑝を対応づける写像のうち 𝑥が連続した1つの区間[𝑎, 𝑏]で定義されるもの。 ただし(𝑎, 𝑏 ∈ 𝑅, 𝑎 <
𝑏)を満たす。 特定の実現値𝑥# に対する確率𝑝# は必ず0になる。 𝑝$ = 𝑓 𝑥$ = 1 ∞ = 0
確率𝑝# は実現値𝑥# の⽣じやすさを表す数値 𝑥 ∈ [𝑎, 𝑏]だと全ての𝑥# について𝑝# = 0
従って「どの⾯も出ない」 「必ず1つの⾯が出る」(定義) ⽭盾
実数集合 𝑅 集合 [0,1] 実現値 𝑥 確率𝑝 確率分布 𝒇: ℬ
→ [0,1] 確率分布 𝒇が満たすべき譲れない3条件 1. 写像𝑓: ℬ → [0,1] 2.全事象の確率𝑓(𝑅) = 1 3. 可算加法性を満たす σ-加法族 ℬ
実数集合 𝑅 集合 [0,1] 実現値 𝑥 確率𝑝 確率分布 𝒇: ℬ
→ [0,1] 確率分布 𝒇が満たすべき譲れない3条件より σ-加法族 ℬ 𝑓 𝑅 = 0 !" " 𝑓 𝑥 𝑑𝑥 = 1
理想的なN⾯体サイコロ 𝑝$ = 𝑓 𝑥$ = 1 ∞ = 0
コレの積分が1 𝑓 𝑅 = O "% % 𝑓 𝑥 𝑑𝑥 = 1
そうだ、累積確率を考えよう
𝐹 𝑥 = 2 !" # 𝑓 𝑥 𝑑𝑥 𝐹
𝑥 = 4 ##$# 𝑓(𝑥% ) 累積確率𝐹 連続確率分布𝑓について 離散確率分布𝑓について
𝑓 𝑥 𝐹 𝑥 確率分布 累積確率
𝐹 𝑥 = 5 PQ R 𝑓 𝑥 𝑑𝑥 連続確率分布𝑓について
𝑓 𝑥 = 1 ∞ 無限に⼩さい数を⾜し上げている 累積確率𝑭は𝒙の定義域内で微分可能 確率分布 累積確率
微分可能?よろしい、 ならば微分しよう。
𝐹 𝑥 = 5 PQ R 𝑓 𝑥 𝑑𝑥 𝑓
𝑥 = 1 ∞ 確率分布 累積確率 f 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 確率密度 連続確率分布𝑓について
確率分布 𝑓 𝑥 累積確率 𝐹 𝑥 確率密度 f 𝑥
確率分布 𝑓 𝑥 累積確率 𝐹 𝑥 確率密度 f 𝑥 𝑝
𝑎 ≤ 𝑥 ≤ 𝑏 = ? ! " 𝑓 𝑥 𝑑𝑥 = ? ! " f 𝑥 𝑑𝑥 a b a b
𝐹 𝑥 = 5 PQ R 𝑓 𝑥 𝑑𝑥 𝑓
𝑥 = 1 ∞ 確率分布 累積確率 f 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 確率密度 例外なく定式化できない 𝑓 𝑥 こっちで定式化する 連続確率分布𝑓について
正規分布の確率密度f f 𝑥 = 1 2πσU exp −(𝑥 − µ)U
2σU 例のあの式!
確率分布𝑓 𝑥 累積確率𝐹 𝑥 確率密度f 𝑥 正規分布 ⼀様分布
例のグラフは正規分布の確率密度fを表す Q. あなたはだあれ? 𝒙 = 𝟎の確率𝑝は ゼロ A. 確率密度
写像 確率測度 確率分布 確率密度 事象族 確率変数 正規分布 連続確率 事象 【今⽇の地図】
確率分布を取り扱うための関数 in R
確率分布関数 𝑓 𝑥 𝐹 𝑥 f 𝑥 確率分布関数 確率分布関数 確率質量関数
(実現値が離散量なのを強調したい?) 累積確率分布関数 累積確率分布関数 累積確率分布関数 累積確率分布関数 確率密度分布関数 確率密度分布関数 呼び⽅いろいろ問題 累積確率分布関数 (他にもあるかも) 確率密度分布関数
&OKPZ