Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
非線形熱方程式の大域解の集合の連結性
Search
木村すらいむ
March 19, 2016
Science
0
710
非線形熱方程式の大域解の集合の連結性
東京工業大大学院 理工学研究科 数学専攻
修士前期課程 修論発表(2016.02.16)
木村すらいむ
March 19, 2016
Tweet
Share
More Decks by 木村すらいむ
See All by 木村すらいむ
東工大創造性育成科目事例発表会「サイエンスカフェ - 組織と運営」発表スライド(2016/01/07)
kimu3_slime
0
220
オンライン講座「MOOCってなに?」(2015/10/02)
kimu3_slime
0
110
半線形熱方程式の解の挙動について
kimu3_slime
0
590
Other Decks in Science
See All in Science
拡散モデルの原理紹介
brainpadpr
3
4.8k
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
150
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
160
ほたるのひかり/RayTracingCamp10
kugimasa
0
210
Direct Preference Optimization
zchenry
0
280
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
230
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
100
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.3k
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
230
(2024) Livres, Femmes et Math
mansuy
0
110
Machine Learning for Materials (Lecture 6)
aronwalsh
0
510
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Docker and Python
trallard
40
3.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Being A Developer After 40
akosma
86
590k
Statistics for Hackers
jakevdp
796
220k
For a Future-Friendly Web
brad_frost
175
9.4k
Site-Speed That Sticks
csswizardry
0
23
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Code Review Best Practice
trishagee
64
17k
Transcript
ඇઢܗํఔࣜͷେҬղͷ࿈݁ੑ ౦ژۀେֶେֶӃ ཧֶݚڀՊ ֶઐ߈ म࢜՝ఔ ଜҰً 1
࣍ 1. ಋೖ 2. ઃఆ 3. ઌߦݚڀ 4. ఆཧ 5.
ূ໌ 6. ·ͱΊ 2
ಋೖ ํఔࣜʢ֦ࢄํఔࣜʣ ඇઢܗํఔࣜʢԠ֦ࢄํఔࣜʣ ut = u ut = u +
f(u) u = u ( x, t ) ut = u + |u|p 1u p > 1 3
ಋೖ ut = u + |u|p 1u p > 1
pF := (N + 2)/N Fujita(1966) ઌۦతݚڀʢྟքࢦͷൃݟʣ ౻ాܕํఔࣜ ͳΒɺਖ਼େҬղ͕ଘࡏ͢Δɻ ͳΒɺͯ͢ͷਖ਼ղ͕༗ݶ࣌ؒͷ͏ͪʹ p < pF p > pF in RN ൃࢄ͢Δʢղͷരൃʣ 4
ಋೖ ⌦ ⇢ RN ༗քͰͳΊΒ͔ͳྖҬ ۭؒ࣍ݩ u = u (
x, t ) x 2 ⌦ , t 0 N 1 8 > < > : ut u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ͜ͷܗͷઢܗํఔࣜʹ͍ͭͯߟ͑Δɻ 5
ಋೖ ղۭؒ ʢsup ϊϧϜʣ 8 > < > : ut
u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ॳظ݅ u0 2 C0(⌦) ඇઢܗ߲ f 2 C1(R) C0(⌦) 6
ಋೖ ͷͱ͖ɺ࣌ؒେҬղͱ͍͏ɻ ͷͱ͖ɺʢ༗ݶ࣌ؒʣരൃղͱ͍͍ɺ Tu0 = 1 Tu0 < 1 Tu0
Λരൃ࣌ࠁͱ͍͏ɻ ͜ͷͱ͖ɺॳظ݅ʹରͯ͠Ұҙʹ ࣌ؒہॴతͳղ͕ଘࡏ͢Δɻ ղͷ࠷େଘࡏ࣌ؒ Tu0 7
ઃఆ G := {u0 2 X | Tu0 = 1}
B := {u0 2 X | Tu0 < 1} ࣌ؒେҬղ രൃղ Λɺೋͭͷू߹ʹΘ͚Δɻ G \ B = ; ղۭؒ ͱͳ͍ͬͯΔɻ C0(⌦) C0(⌦) = G [ B 8
ઃఆ G ʹ͓͍ͯހঢ়࿈͔݁ʁ ࣌ؒେҬղͷू߹ G ʹ͓͍ͯ࿈͔݁ʁ ࣌ؒେҬղͷू߹ େҬղͱരൃղ͕ࠞࡏ͢Δํఔࣜʹ͓͍ͯɺେҬղ
ͷू߹͕࿈݁Ͱ͋Δ͔Ͳ͏͔ɺํఔࣜͷղͷߏ Λཧղ͢ΔͨΊͷॏཁͳಛͰ͋Δͱߟ͑ΒΕΔɻ C0(⌦) C0(⌦) 9
ઌߦ݁Ռ P. L. Lions (1982) ͕ತؔͳΒɺ f G ತू߹ɻ →
G ࿈݁ɺހঢ়࿈݁Ͱ͋Δɻ 10
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) |f|
͕1ΑΓେ͖͘1ʹे͍ۙႈؔͰ ্͔Β͓͑͞ΒΕɺ͞Βʹ͍͔ͭ͘ͷ݅ Λຬͨ͢ͳΒɺG ತͰͳ͍ɻ 11
ઌߦ݁Ռ ̎ɽ͋Δ ɹɹɹɹ ⌘, " > 0 f(s) ⌘s1+✏ s
2 R f(0) = 0 ͱ͍͏݅ΛՃ͑Εɺ 1ɽ ࣗ໌ղͱ͍͏େҬղ͕ଘࡏ͢Δɻ രൃղ͕ଘࡏ͢Δɻ ͕ଘࡏͯ͠ɺेେ͖ͳ ʹରͯ͠ɺ ͱ͍͏݅ΛՃ͑Δͱɺ G 6= ;, B 6= ; ͱͳΔඇઢܗ߲ͷ݅ʹ͍ͭͯ 12
ઌߦ݁Ռ ͱ͢Δͱɺ f(s) = |s|p 1s, p > 1 G
6= ;, B 6= ; ͱͳΔɻ ઌ΄Ͳͷ̍ɽ̎ɽͷ݅Λຬͨ͠ɺ 13
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ
ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 14
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) →ހঢ়࿈݁ੑෆ໌
ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 15
ओఆཧ ओఆཧɺۭؒ̍࣍ݩʹ੍ݶͨ͠ͱ͖ʹɺେҬղͷू ߹͕ހঢ়࿈݁ੑΛ໌Β͔ʹͨ͠ɻ 16
ओఆཧ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] N = 1, ⌦ = ( 1, 1) 17
ূ໌ • ൃදʹ͓͚Δূ໌ͷྲྀΕ • ໋Λ༻ҙ • ໋ΛͬͯఆཧΛূ໌ • ໋Λূ໌ 18
ূ໌ C0(⌦) 2 S v 0 19
ূ໌ ఆཧΛূ໌͢ΔͨΊʹɺ࣍ͷ໋Λࣔ͢ɻ ໋ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S
Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ ΛͱΔɻ ͱ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͷ͜ͱʣ 20
ূ໌ C0(⌦) 2 S v 0 u 21
ূ໌ ཱ͕͢Δ͜ͱ͕ΒΕ͍ͯΔɻ ఆཧͷূ໌ !(u0) ⇢ S !(u0) ͷਖ਼ͷۃݶू߹ʢω-ۃݶू߹ʣ ͜ͷํఔࣜͰɺҙͷ ʹର͠ɺ
u0 u0 2 G ରԠ͢Δղ ͕ t ! 1 ͰҰ༷ʹ༗քͰ͋Γɺ ʢํఔࣜʹରԠ͢ΔΤωϧΪʔ൚ؔΛௐΔʣ 22
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
23
ূ໌ ཱ͕͢Δɻ !(u0) ⇢ S ໋ʹΑΓɺҙͷඇࣗ໌ͳఆৗղ v 2 S ɺࣗ໌ղ0ͱͭͳ͛ΒΕΔɻ
ΑͬͯɺେҬղͷू߹ ހঢ়࿈݁Ͱ͋Δɻ G ఆཧͷূ໌ऴΘΓ 24
ূ໌ ิ ໋ͷূ໌ ( ' xx + p|v|p 1' =
' in ( 1 , 1) ' = 0 on @ ( 1 , 1) ͷ·ΘΓͰͷઢܗԽݻ༗Λߟ͑Δɻ v 2 S ࠷େͷݻ༗Λ ͕ෆ҆ఆͰ͋Δ͜ͱΛҙຯ͢Δɻ ɺରԠ͢Δݻ༗ؔΛ 1 '1 ͱ͢Δɻ ͜ͷͱ͖ɺ 1 > 0 Ͱ͋Δɻ ͜Ε v 25
ূ໌ 1 = sup U2H1 0 (⌦),U6⌘0 R ⌦ {
|r U |2 + p' p 1 1 U 2} dx R ⌦ U 2 dx มݪཧʹΑΓ࠷େݻ༗ϨΠϦʔͱͯ͠දͤΔɻ U = '1 ͱͯ͠ࢠΛܭࢉ͢Δɻ '1 ͕ఆৗղͰ͋Δ͜ͱɺάϦʔϯͷఆཧ Λ͍ܭࢉ͢Δͱ 1 > 0 26
ূ໌ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ
ΛͱΔɻ ͱ ͜ͷ໋Λࣔͨ͢Ίʹɺ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͕ଘࡏ͢Δ͜ͱΛࣔͤྑ͍ɻ 27
ূ໌ ༏ղɾྼղͷํ๏Ͱ u ! v (t ! 1), u !
0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ Λߏ͢Δɻ Ͱද͠ɺ߹͚͍ͯࣔͯ͘͠͠ɻ u := v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ߹̍ɽ ͷͱ͖ ΛదʹܾΊɺ ͱ͓͘ɻ z[v] v z[v] = 0 ͷྵΛ ", 28
ূ໌ u, u ! v (t ! 1) u :=
v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ΛదʹܾΊΔ͜ͱͰ ͜ΕΒ͕༏ղɾྼղͱͳΔɻ ཱɻ ( t ) = 1t 1 p 1 log(1 + 1 1 e 1(p 1)t ) ", 29
ূ໌ Y. Fukao, Y. Morita, H. Ninomiya(2004) Λࢀߟʹ ͕ͨͬͯ͠ɺ༏ղɾྼղͷํ๏ʹΑΓɺ ui(
x, i ) := u (| x | , i ) {ui }i2N ͱ͓͖ɺ ui ! u (i ! 1) ͕ࣔͤΔɻ ΞείϦɾΞϧπΣϥͷఆཧΛ༻͍ͯ Λߏ͢Δɻ ղͷྻ t < 0 Ͱఆٛ͞Εͨղ u ͕ଘࡏ͢Δɻ ͜͜Ͱ 30
ূ໌ v u u ! 0 (t ! 1) ۭؒ1࣍ݩͷͰྵ͕ඇ૿ՃͰ͋Δ͜ͱɺ
͕ࣔͤͨɻ ߹2. z[v] = k(k 2 N) ͜ͷ߹ɺ z[v] = 0 v Λ ͱͳΔղͷͭͳ͗߹Θͤ ͱͯ͠ߟ͑Δ͜ͱͰɺz[v] = 0 ͷ߹ʹؼண͢Δɻ ূ໌ऴΘΓ ͕ෆ҆ఆͰ͋Δ͜ͱʢิ1ʣΑΓɺ v 31 ܭࢉʹΑΓ
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
32
·ͱΊ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] G ʹ͓͍ͯހঢ়࿈͔݁ʁ X ࣌ؒେҬղͷू߹ N = 1, ⌦ = ( 1, 1) 33