Upgrade to Pro — share decks privately, control downloads, hide ads and more …

非線形熱方程式の大域解の集合の連結性

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 非線形熱方程式の大域解の集合の連結性

東京工業大大学院 理工学研究科 数学専攻
修士前期課程 修論発表(2016.02.16)

Avatar for 木村すらいむ

木村すらいむ

March 19, 2016
Tweet

More Decks by 木村すらいむ

Other Decks in Science

Transcript

  1. ಋೖ ut = u + |u|p 1u p > 1

    pF := (N + 2)/N Fujita(1966) ઌۦతݚڀʢྟքࢦ਺ͷൃݟʣ ౻ాܕํఔࣜ ͳΒɺਖ਼஋େҬղ͕ଘࡏ͢Δɻ ͳΒɺ͢΂ͯͷਖ਼஋ղ͕༗ݶ࣌ؒͷ͏ͪʹ p < pF p > pF in RN ൃࢄ͢Δʢղͷരൃʣ 4
  2. ಋೖ ⌦ ⇢ RN ༗քͰͳΊΒ͔ͳྖҬ ۭؒ࣍ݩ u = u (

    x, t ) x 2 ⌦ , t 0 N 1 8 > < > : ut u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ͜ͷܗͷ൒ઢܗ೤ํఔࣜʹ͍ͭͯߟ͑Δɻ 5
  3. ಋೖ ղۭؒ ʢsup ϊϧϜʣ 8 > < > : ut

    u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ॳظ৚݅ u0 2 C0(⌦) ඇઢܗ߲ f 2 C1(R) C0(⌦) 6
  4. ಋೖ ͷͱ͖ɺ࣌ؒେҬղͱ͍͏ɻ ͷͱ͖ɺʢ༗ݶ࣌ؒʣരൃղͱ͍͍ɺ Tu0 = 1 Tu0 < 1 Tu0

    Λരൃ࣌ࠁͱ͍͏ɻ ͜ͷͱ͖ɺॳظ৚݅ʹରͯ͠Ұҙʹ ࣌ؒہॴతͳղ͕ଘࡏ͢Δɻ ղͷ࠷େଘࡏ࣌ؒ Tu0 7
  5. ໰୊ઃఆ G := {u0 2 X | Tu0 = 1}

    B := {u0 2 X | Tu0 < 1} ࣌ؒେҬղ രൃղ Λɺೋͭͷू߹ʹΘ͚Δɻ G \ B = ; ղۭؒ ͱͳ͍ͬͯΔɻ C0(⌦) C0(⌦) = G [ B 8
  6. ໰୊ઃఆ G ͸ ʹ͓͍ͯހঢ়࿈͔݁ʁ ࣌ؒେҬղͷू߹ G ͸ ʹ͓͍ͯ࿈͔݁ʁ ࣌ؒେҬղͷू߹ େҬղͱരൃղ͕ࠞࡏ͢Δํఔࣜʹ͓͍ͯɺେҬղ

    ͷू߹͕࿈݁Ͱ͋Δ͔Ͳ͏͔͸ɺํఔࣜͷղͷߏ଄ Λཧղ͢ΔͨΊͷॏཁͳಛ௃Ͱ͋Δͱߟ͑ΒΕΔɻ C0(⌦) C0(⌦) 9
  7. ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) |f|

    ͕1ΑΓେ͖͘1ʹे෼͍ۙႈؔ਺Ͱ ্͔Β͓͑͞ΒΕɺ͞Βʹ͍͔ͭ͘ͷ৚݅ Λຬͨ͢ͳΒɺG ͸ತͰ͸ͳ͍ɻ 11
  8. ઌߦ݁Ռ ̎ɽ͋Δ ɹɹɹɹ ⌘, " > 0 f(s) ⌘s1+✏ s

    2 R f(0) = 0 ͱ͍͏৚݅ΛՃ͑Ε͹ɺ 1ɽ ࣗ໌ղͱ͍͏େҬղ͕ଘࡏ͢Δɻ രൃղ͕ଘࡏ͢Δɻ ͕ଘࡏͯ͠ɺे෼େ͖ͳ ʹରͯ͠ɺ ͱ͍͏৚݅ΛՃ͑Δͱɺ G 6= ;, B 6= ; ͱͳΔඇઢܗ߲ͷ৚݅ʹ͍ͭͯ 12
  9. ઌߦ݁Ռ ͱ͢Δͱɺ f(s) = |s|p 1s, p > 1 G

    6= ;, B 6= ; ͱͳΔɻ ઌ΄Ͳͷ̍ɽ̎ɽͷ৚݅Λຬͨ͠ɺ 13
  10. ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) →ހঢ়࿈݁ੑ͸ෆ໌

    ɹɹɹ͕ɺ1ʹे෼͍ۙͳΒ͹ɺ ٿରশͳେҬղͷू߹͸࿈݁Ͱ͋Δɻ p > 1 15
  11. ओఆཧ ͸ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :

    ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] N = 1, ⌦ = ( 1, 1) 17
  12. ূ໌ ఆཧΛূ໌͢ΔͨΊʹɺ࣍ͷ໋୊Λࣔ͢ɻ ໋୊ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S

    Λఆৗղͷू߹ͱ͠ɺ ೚ҙʹඇࣗ໌ͳఆৗղ ΛͱΔɻ ͱ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͷ͜ͱʣ 20
  13. ূ໌ ͕੒ཱ͢Δ͜ͱ͕஌ΒΕ͍ͯΔɻ ఆཧͷূ໌ !(u0) ⇢ S !(u0) ͷਖ਼ͷۃݶू߹ʢω-ۃݶू߹ʣ ͜ͷํఔࣜͰ͸ɺ೚ҙͷ ʹର͠ɺ

    u0 u0 2 G ରԠ͢Δղ ͕ t ! 1 ͰҰ༷ʹ༗քͰ͋Γɺ ʢํఔࣜʹରԠ͢ΔΤωϧΪʔ൚ؔ਺Λௐ΂Δʣ 22
  14. ূ໌ ิ୊ ໋୊ͷূ໌ ( ' xx + p|v|p 1' =

    ' in ( 1 , 1) ' = 0 on @ ( 1 , 1) ͷ·ΘΓͰͷઢܗԽݻ༗஋໰୊Λߟ͑Δɻ v 2 S ࠷େͷݻ༗஋Λ ͕ෆ҆ఆͰ͋Δ͜ͱΛҙຯ͢Δɻ ɺରԠ͢Δݻ༗ؔ਺Λ 1 '1 ͱ͢Δɻ ͜ͷͱ͖ɺ 1 > 0 Ͱ͋Δɻ ͜Ε͸ v 25
  15. ূ໌ 1 = sup U2H1 0 (⌦),U6⌘0 R ⌦ {

    |r U |2 + p' p 1 1 U 2} dx R ⌦ U 2 dx ม෼ݪཧʹΑΓ࠷େݻ༗஋͸ϨΠϦʔ঎ͱͯ͠දͤΔɻ U = '1 ͱͯ͠෼ࢠΛܭࢉ͢Δɻ '1 ͕ఆৗղͰ͋Δ͜ͱɺάϦʔϯͷఆཧ Λ࢖͍ܭࢉ͢Δͱ 1 > 0 26
  16. ূ໌ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S Λఆৗղͷू߹ͱ͠ɺ ೚ҙʹඇࣗ໌ͳఆৗղ

    ΛͱΔɻ ͱ ͜ͷ໋୊Λࣔͨ͢Ίʹ͸ɺ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͕ଘࡏ͢Δ͜ͱΛࣔͤ͹ྑ͍ɻ 27
  17. ূ໌ ༏ղɾྼղͷํ๏Ͱ u ! v (t ! 1), u !

    0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ Λߏ੒͢Δɻ Ͱද͠ɺ৔߹෼͚͍ͯࣔͯ͘͠͠ɻ u := v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ৔߹̍ɽ ͷͱ͖ Λద౰ʹܾΊɺ ͱ͓͘ɻ z[v] v z[v] = 0 ͷྵ఺਺Λ ", 28
  18. ূ໌ u, u ! v (t ! 1) u :=

    v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) Λద౰ʹܾΊΔ͜ͱͰ ͜ΕΒ͕༏ղɾྼղͱͳΔɻ ΋੒ཱɻ ( t ) = 1t 1 p 1 log(1 + 1 1 e 1(p 1)t ) ", 29
  19. ূ໌ Y. Fukao, Y. Morita, H. Ninomiya(2004) Λࢀߟʹ ͕ͨͬͯ͠ɺ༏ղɾྼղͷํ๏ʹΑΓɺ ui(

    x, i ) := u (| x | , i ) {ui }i2N ͱ͓͖ɺ ui ! u (i ! 1) ͕ࣔͤΔɻ ΞείϦɾΞϧπΣϥͷఆཧΛ༻͍ͯ Λߏ੒͢Δɻ ղͷྻ t < 0 Ͱఆٛ͞Εͨղ u ͕ଘࡏ͢Δɻ ͜͜Ͱ 30
  20. ূ໌ v u u ! 0 (t ! 1) ۭؒ1࣍ݩͷ໰୊Ͱྵ఺਺͕ඇ૿ՃͰ͋Δ͜ͱɺ

    ͕ࣔͤͨɻ ৔߹2. z[v] = k(k 2 N) ͜ͷ৔߹͸ɺ z[v] = 0 v Λ ͱͳΔղͷͭͳ͗߹Θͤ ͱͯ͠ߟ͑Δ͜ͱͰɺz[v] = 0 ͷ৔߹ʹؼண͢Δɻ ূ໌ऴΘΓ ͕ෆ҆ఆͰ͋Δ͜ͱʢิ୊1ʣΑΓɺ v 31 ܭࢉʹΑΓ
  21. ·ͱΊ ͸ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :

    ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] G ͸ ʹ͓͍ͯހঢ়࿈͔݁ʁ X ࣌ؒେҬղͷू߹ N = 1, ⌦ = ( 1, 1) 33