$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
非線形熱方程式の大域解の集合の連結性
Search
木村すらいむ
March 19, 2016
Science
0
850
非線形熱方程式の大域解の集合の連結性
東京工業大大学院 理工学研究科 数学専攻
修士前期課程 修論発表(2016.02.16)
木村すらいむ
March 19, 2016
Tweet
Share
More Decks by 木村すらいむ
See All by 木村すらいむ
東工大創造性育成科目事例発表会「サイエンスカフェ - 組織と運営」発表スライド(2016/01/07)
kimu3_slime
0
230
オンライン講座「MOOCってなに?」(2015/10/02)
kimu3_slime
0
120
半線形熱方程式の解の挙動について
kimu3_slime
0
750
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
140
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
210
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
凸最適化からDC最適化まで
santana_hammer
1
340
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
データベース01: データベースを使わない世界
trycycle
PRO
1
920
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
Embracing the Ebb and Flow
colly
88
4.9k
Faster Mobile Websites
deanohume
310
31k
Side Projects
sachag
455
43k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
How to Ace a Technical Interview
jacobian
280
24k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Navigating Team Friction
lara
191
16k
Transcript
ඇઢܗํఔࣜͷେҬղͷ࿈݁ੑ ౦ژۀେֶେֶӃ ཧֶݚڀՊ ֶઐ߈ म࢜՝ఔ ଜҰً 1
࣍ 1. ಋೖ 2. ઃఆ 3. ઌߦݚڀ 4. ఆཧ 5.
ূ໌ 6. ·ͱΊ 2
ಋೖ ํఔࣜʢ֦ࢄํఔࣜʣ ඇઢܗํఔࣜʢԠ֦ࢄํఔࣜʣ ut = u ut = u +
f(u) u = u ( x, t ) ut = u + |u|p 1u p > 1 3
ಋೖ ut = u + |u|p 1u p > 1
pF := (N + 2)/N Fujita(1966) ઌۦతݚڀʢྟքࢦͷൃݟʣ ౻ాܕํఔࣜ ͳΒɺਖ਼େҬղ͕ଘࡏ͢Δɻ ͳΒɺͯ͢ͷਖ਼ղ͕༗ݶ࣌ؒͷ͏ͪʹ p < pF p > pF in RN ൃࢄ͢Δʢղͷരൃʣ 4
ಋೖ ⌦ ⇢ RN ༗քͰͳΊΒ͔ͳྖҬ ۭؒ࣍ݩ u = u (
x, t ) x 2 ⌦ , t 0 N 1 8 > < > : ut u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ͜ͷܗͷઢܗํఔࣜʹ͍ͭͯߟ͑Δɻ 5
ಋೖ ղۭؒ ʢsup ϊϧϜʣ 8 > < > : ut
u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ॳظ݅ u0 2 C0(⌦) ඇઢܗ߲ f 2 C1(R) C0(⌦) 6
ಋೖ ͷͱ͖ɺ࣌ؒେҬղͱ͍͏ɻ ͷͱ͖ɺʢ༗ݶ࣌ؒʣരൃղͱ͍͍ɺ Tu0 = 1 Tu0 < 1 Tu0
Λരൃ࣌ࠁͱ͍͏ɻ ͜ͷͱ͖ɺॳظ݅ʹରͯ͠Ұҙʹ ࣌ؒہॴతͳղ͕ଘࡏ͢Δɻ ղͷ࠷େଘࡏ࣌ؒ Tu0 7
ઃఆ G := {u0 2 X | Tu0 = 1}
B := {u0 2 X | Tu0 < 1} ࣌ؒେҬղ രൃղ Λɺೋͭͷू߹ʹΘ͚Δɻ G \ B = ; ղۭؒ ͱͳ͍ͬͯΔɻ C0(⌦) C0(⌦) = G [ B 8
ઃఆ G ʹ͓͍ͯހঢ়࿈͔݁ʁ ࣌ؒେҬղͷू߹ G ʹ͓͍ͯ࿈͔݁ʁ ࣌ؒେҬղͷू߹ େҬղͱരൃղ͕ࠞࡏ͢Δํఔࣜʹ͓͍ͯɺେҬղ
ͷू߹͕࿈݁Ͱ͋Δ͔Ͳ͏͔ɺํఔࣜͷղͷߏ Λཧղ͢ΔͨΊͷॏཁͳಛͰ͋Δͱߟ͑ΒΕΔɻ C0(⌦) C0(⌦) 9
ઌߦ݁Ռ P. L. Lions (1982) ͕ತؔͳΒɺ f G ತू߹ɻ →
G ࿈݁ɺހঢ়࿈݁Ͱ͋Δɻ 10
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) |f|
͕1ΑΓେ͖͘1ʹे͍ۙႈؔͰ ্͔Β͓͑͞ΒΕɺ͞Βʹ͍͔ͭ͘ͷ݅ Λຬͨ͢ͳΒɺG ತͰͳ͍ɻ 11
ઌߦ݁Ռ ̎ɽ͋Δ ɹɹɹɹ ⌘, " > 0 f(s) ⌘s1+✏ s
2 R f(0) = 0 ͱ͍͏݅ΛՃ͑Εɺ 1ɽ ࣗ໌ղͱ͍͏େҬղ͕ଘࡏ͢Δɻ രൃղ͕ଘࡏ͢Δɻ ͕ଘࡏͯ͠ɺेେ͖ͳ ʹରͯ͠ɺ ͱ͍͏݅ΛՃ͑Δͱɺ G 6= ;, B 6= ; ͱͳΔඇઢܗ߲ͷ݅ʹ͍ͭͯ 12
ઌߦ݁Ռ ͱ͢Δͱɺ f(s) = |s|p 1s, p > 1 G
6= ;, B 6= ; ͱͳΔɻ ઌ΄Ͳͷ̍ɽ̎ɽͷ݅Λຬͨ͠ɺ 13
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ
ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 14
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) →ހঢ়࿈݁ੑෆ໌
ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 15
ओఆཧ ओఆཧɺۭؒ̍࣍ݩʹ੍ݶͨ͠ͱ͖ʹɺେҬղͷू ߹͕ހঢ়࿈݁ੑΛ໌Β͔ʹͨ͠ɻ 16
ओఆཧ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] N = 1, ⌦ = ( 1, 1) 17
ূ໌ • ൃදʹ͓͚Δূ໌ͷྲྀΕ • ໋Λ༻ҙ • ໋ΛͬͯఆཧΛূ໌ • ໋Λূ໌ 18
ূ໌ C0(⌦) 2 S v 0 19
ূ໌ ఆཧΛূ໌͢ΔͨΊʹɺ࣍ͷ໋Λࣔ͢ɻ ໋ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S
Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ ΛͱΔɻ ͱ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͷ͜ͱʣ 20
ূ໌ C0(⌦) 2 S v 0 u 21
ূ໌ ཱ͕͢Δ͜ͱ͕ΒΕ͍ͯΔɻ ఆཧͷূ໌ !(u0) ⇢ S !(u0) ͷਖ਼ͷۃݶू߹ʢω-ۃݶू߹ʣ ͜ͷํఔࣜͰɺҙͷ ʹର͠ɺ
u0 u0 2 G ରԠ͢Δղ ͕ t ! 1 ͰҰ༷ʹ༗քͰ͋Γɺ ʢํఔࣜʹରԠ͢ΔΤωϧΪʔ൚ؔΛௐΔʣ 22
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
23
ূ໌ ཱ͕͢Δɻ !(u0) ⇢ S ໋ʹΑΓɺҙͷඇࣗ໌ͳఆৗղ v 2 S ɺࣗ໌ղ0ͱͭͳ͛ΒΕΔɻ
ΑͬͯɺେҬղͷू߹ ހঢ়࿈݁Ͱ͋Δɻ G ఆཧͷূ໌ऴΘΓ 24
ূ໌ ิ ໋ͷূ໌ ( ' xx + p|v|p 1' =
' in ( 1 , 1) ' = 0 on @ ( 1 , 1) ͷ·ΘΓͰͷઢܗԽݻ༗Λߟ͑Δɻ v 2 S ࠷େͷݻ༗Λ ͕ෆ҆ఆͰ͋Δ͜ͱΛҙຯ͢Δɻ ɺରԠ͢Δݻ༗ؔΛ 1 '1 ͱ͢Δɻ ͜ͷͱ͖ɺ 1 > 0 Ͱ͋Δɻ ͜Ε v 25
ূ໌ 1 = sup U2H1 0 (⌦),U6⌘0 R ⌦ {
|r U |2 + p' p 1 1 U 2} dx R ⌦ U 2 dx มݪཧʹΑΓ࠷େݻ༗ϨΠϦʔͱͯ͠දͤΔɻ U = '1 ͱͯ͠ࢠΛܭࢉ͢Δɻ '1 ͕ఆৗղͰ͋Δ͜ͱɺάϦʔϯͷఆཧ Λ͍ܭࢉ͢Δͱ 1 > 0 26
ূ໌ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ
ΛͱΔɻ ͱ ͜ͷ໋Λࣔͨ͢Ίʹɺ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͕ଘࡏ͢Δ͜ͱΛࣔͤྑ͍ɻ 27
ূ໌ ༏ղɾྼղͷํ๏Ͱ u ! v (t ! 1), u !
0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ Λߏ͢Δɻ Ͱද͠ɺ߹͚͍ͯࣔͯ͘͠͠ɻ u := v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ߹̍ɽ ͷͱ͖ ΛదʹܾΊɺ ͱ͓͘ɻ z[v] v z[v] = 0 ͷྵΛ ", 28
ূ໌ u, u ! v (t ! 1) u :=
v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ΛదʹܾΊΔ͜ͱͰ ͜ΕΒ͕༏ղɾྼղͱͳΔɻ ཱɻ ( t ) = 1t 1 p 1 log(1 + 1 1 e 1(p 1)t ) ", 29
ূ໌ Y. Fukao, Y. Morita, H. Ninomiya(2004) Λࢀߟʹ ͕ͨͬͯ͠ɺ༏ղɾྼղͷํ๏ʹΑΓɺ ui(
x, i ) := u (| x | , i ) {ui }i2N ͱ͓͖ɺ ui ! u (i ! 1) ͕ࣔͤΔɻ ΞείϦɾΞϧπΣϥͷఆཧΛ༻͍ͯ Λߏ͢Δɻ ղͷྻ t < 0 Ͱఆٛ͞Εͨղ u ͕ଘࡏ͢Δɻ ͜͜Ͱ 30
ূ໌ v u u ! 0 (t ! 1) ۭؒ1࣍ݩͷͰྵ͕ඇ૿ՃͰ͋Δ͜ͱɺ
͕ࣔͤͨɻ ߹2. z[v] = k(k 2 N) ͜ͷ߹ɺ z[v] = 0 v Λ ͱͳΔղͷͭͳ͗߹Θͤ ͱͯ͠ߟ͑Δ͜ͱͰɺz[v] = 0 ͷ߹ʹؼண͢Δɻ ূ໌ऴΘΓ ͕ෆ҆ఆͰ͋Δ͜ͱʢิ1ʣΑΓɺ v 31 ܭࢉʹΑΓ
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
32
·ͱΊ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] G ʹ͓͍ͯހঢ়࿈͔݁ʁ X ࣌ؒେҬղͷू߹ N = 1, ⌦ = ( 1, 1) 33