Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
非線形熱方程式の大域解の集合の連結性
Search
木村すらいむ
March 19, 2016
Science
0
830
非線形熱方程式の大域解の集合の連結性
東京工業大大学院 理工学研究科 数学専攻
修士前期課程 修論発表(2016.02.16)
木村すらいむ
March 19, 2016
Tweet
Share
More Decks by 木村すらいむ
See All by 木村すらいむ
東工大創造性育成科目事例発表会「サイエンスカフェ - 組織と運営」発表スライド(2016/01/07)
kimu3_slime
0
230
オンライン講座「MOOCってなに?」(2015/10/02)
kimu3_slime
0
120
半線形熱方程式の解の挙動について
kimu3_slime
0
730
Other Decks in Science
See All in Science
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
610
知能とはなにかーヒトとAIのあいだー
tagtag
0
110
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
800
高校生就活へのDA導入の提案
shunyanoda
0
5.9k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
180
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
4
270
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
850
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
870
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
970
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
Featured
See All Featured
Navigating Team Friction
lara
189
15k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Code Review Best Practice
trishagee
70
19k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Being A Developer After 40
akosma
90
590k
Transcript
ඇઢܗํఔࣜͷେҬղͷ࿈݁ੑ ౦ژۀେֶେֶӃ ཧֶݚڀՊ ֶઐ߈ म࢜՝ఔ ଜҰً 1
࣍ 1. ಋೖ 2. ઃఆ 3. ઌߦݚڀ 4. ఆཧ 5.
ূ໌ 6. ·ͱΊ 2
ಋೖ ํఔࣜʢ֦ࢄํఔࣜʣ ඇઢܗํఔࣜʢԠ֦ࢄํఔࣜʣ ut = u ut = u +
f(u) u = u ( x, t ) ut = u + |u|p 1u p > 1 3
ಋೖ ut = u + |u|p 1u p > 1
pF := (N + 2)/N Fujita(1966) ઌۦతݚڀʢྟքࢦͷൃݟʣ ౻ాܕํఔࣜ ͳΒɺਖ਼େҬղ͕ଘࡏ͢Δɻ ͳΒɺͯ͢ͷਖ਼ղ͕༗ݶ࣌ؒͷ͏ͪʹ p < pF p > pF in RN ൃࢄ͢Δʢղͷരൃʣ 4
ಋೖ ⌦ ⇢ RN ༗քͰͳΊΒ͔ͳྖҬ ۭؒ࣍ݩ u = u (
x, t ) x 2 ⌦ , t 0 N 1 8 > < > : ut u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ͜ͷܗͷઢܗํఔࣜʹ͍ͭͯߟ͑Δɻ 5
ಋೖ ղۭؒ ʢsup ϊϧϜʣ 8 > < > : ut
u = f(u) in ⌦ ⇥ (0, T) u = 0 on @⌦ ⇥ (0, T) u(x, 0) = u0(x) in ⌦ ॳظ݅ u0 2 C0(⌦) ඇઢܗ߲ f 2 C1(R) C0(⌦) 6
ಋೖ ͷͱ͖ɺ࣌ؒେҬղͱ͍͏ɻ ͷͱ͖ɺʢ༗ݶ࣌ؒʣരൃղͱ͍͍ɺ Tu0 = 1 Tu0 < 1 Tu0
Λരൃ࣌ࠁͱ͍͏ɻ ͜ͷͱ͖ɺॳظ݅ʹରͯ͠Ұҙʹ ࣌ؒہॴతͳղ͕ଘࡏ͢Δɻ ղͷ࠷େଘࡏ࣌ؒ Tu0 7
ઃఆ G := {u0 2 X | Tu0 = 1}
B := {u0 2 X | Tu0 < 1} ࣌ؒେҬղ രൃղ Λɺೋͭͷू߹ʹΘ͚Δɻ G \ B = ; ղۭؒ ͱͳ͍ͬͯΔɻ C0(⌦) C0(⌦) = G [ B 8
ઃఆ G ʹ͓͍ͯހঢ়࿈͔݁ʁ ࣌ؒେҬղͷू߹ G ʹ͓͍ͯ࿈͔݁ʁ ࣌ؒେҬղͷू߹ େҬղͱരൃղ͕ࠞࡏ͢Δํఔࣜʹ͓͍ͯɺେҬղ
ͷू߹͕࿈݁Ͱ͋Δ͔Ͳ͏͔ɺํఔࣜͷղͷߏ Λཧղ͢ΔͨΊͷॏཁͳಛͰ͋Δͱߟ͑ΒΕΔɻ C0(⌦) C0(⌦) 9
ઌߦ݁Ռ P. L. Lions (1982) ͕ತؔͳΒɺ f G ತू߹ɻ →
G ࿈݁ɺހঢ়࿈݁Ͱ͋Δɻ 10
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) |f|
͕1ΑΓେ͖͘1ʹे͍ۙႈؔͰ ্͔Β͓͑͞ΒΕɺ͞Βʹ͍͔ͭ͘ͷ݅ Λຬͨ͢ͳΒɺG ತͰͳ͍ɻ 11
ઌߦ݁Ռ ̎ɽ͋Δ ɹɹɹɹ ⌘, " > 0 f(s) ⌘s1+✏ s
2 R f(0) = 0 ͱ͍͏݅ΛՃ͑Εɺ 1ɽ ࣗ໌ղͱ͍͏େҬղ͕ଘࡏ͢Δɻ രൃղ͕ଘࡏ͢Δɻ ͕ଘࡏͯ͠ɺेେ͖ͳ ʹରͯ͠ɺ ͱ͍͏݅ΛՃ͑Δͱɺ G 6= ;, B 6= ; ͱͳΔඇઢܗ߲ͷ݅ʹ͍ͭͯ 12
ઌߦ݁Ռ ͱ͢Δͱɺ f(s) = |s|p 1s, p > 1 G
6= ;, B 6= ; ͱͳΔɻ ઌ΄Ͳͷ̍ɽ̎ɽͷ݅Λຬͨ͠ɺ 13
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ
ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 14
ઌߦ݁Ռ T. Cazenave, F. Dickstein, F. B. Weissler (2010) →ހঢ়࿈݁ੑෆ໌
ɹɹɹ͕ɺ1ʹे͍ۙͳΒɺ ٿରশͳେҬղͷू߹࿈݁Ͱ͋Δɻ p > 1 15
ओఆཧ ओఆཧɺۭؒ̍࣍ݩʹ੍ݶͨ͠ͱ͖ʹɺେҬղͷू ߹͕ހঢ়࿈݁ੑΛ໌Β͔ʹͨ͠ɻ 16
ओఆཧ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] N = 1, ⌦ = ( 1, 1) 17
ূ໌ • ൃදʹ͓͚Δূ໌ͷྲྀΕ • ໋Λ༻ҙ • ໋ΛͬͯఆཧΛূ໌ • ໋Λূ໌ 18
ূ໌ C0(⌦) 2 S v 0 19
ূ໌ ఆཧΛূ໌͢ΔͨΊʹɺ࣍ͷ໋Λࣔ͢ɻ ໋ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S
Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ ΛͱΔɻ ͱ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͷ͜ͱʣ 20
ূ໌ C0(⌦) 2 S v 0 u 21
ূ໌ ཱ͕͢Δ͜ͱ͕ΒΕ͍ͯΔɻ ఆཧͷূ໌ !(u0) ⇢ S !(u0) ͷਖ਼ͷۃݶू߹ʢω-ۃݶू߹ʣ ͜ͷํఔࣜͰɺҙͷ ʹର͠ɺ
u0 u0 2 G ରԠ͢Δղ ͕ t ! 1 ͰҰ༷ʹ༗քͰ͋Γɺ ʢํఔࣜʹରԠ͢ΔΤωϧΪʔ൚ؔΛௐΔʣ 22
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
23
ূ໌ ཱ͕͢Δɻ !(u0) ⇢ S ໋ʹΑΓɺҙͷඇࣗ໌ͳఆৗղ v 2 S ɺࣗ໌ղ0ͱͭͳ͛ΒΕΔɻ
ΑͬͯɺେҬղͷू߹ ހঢ়࿈݁Ͱ͋Δɻ G ఆཧͷূ໌ऴΘΓ 24
ূ໌ ิ ໋ͷূ໌ ( ' xx + p|v|p 1' =
' in ( 1 , 1) ' = 0 on @ ( 1 , 1) ͷ·ΘΓͰͷઢܗԽݻ༗Λߟ͑Δɻ v 2 S ࠷େͷݻ༗Λ ͕ෆ҆ఆͰ͋Δ͜ͱΛҙຯ͢Δɻ ɺରԠ͢Δݻ༗ؔΛ 1 '1 ͱ͢Δɻ ͜ͷͱ͖ɺ 1 > 0 Ͱ͋Δɻ ͜Ε v 25
ূ໌ 1 = sup U2H1 0 (⌦),U6⌘0 R ⌦ {
|r U |2 + p' p 1 1 U 2} dx R ⌦ U 2 dx มݪཧʹΑΓ࠷େݻ༗ϨΠϦʔͱͯ͠දͤΔɻ U = '1 ͱͯ͠ࢠΛܭࢉ͢Δɻ '1 ͕ఆৗղͰ͋Δ͜ͱɺάϦʔϯͷఆཧ Λ͍ܭࢉ͢Δͱ 1 > 0 26
ূ໌ Λͭͳ͙ϔςϩΫϦχοΫيಓ͕ଘࡏ͢Δɻ S v 0 v 2 S Λఆৗղͷू߹ͱ͠ɺ ҙʹඇࣗ໌ͳఆৗղ
ΛͱΔɻ ͱ ͜ͷ໋Λࣔͨ͢Ίʹɺ u ! v (t ! 1), u ! 0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ ͕ଘࡏ͢Δ͜ͱΛࣔͤྑ͍ɻ 27
ূ໌ ༏ղɾྼղͷํ๏Ͱ u ! v (t ! 1), u !
0 (t ! 1) u 2 G ͱͳΔΑ͏ͳ Λߏ͢Δɻ Ͱද͠ɺ߹͚͍ͯࣔͯ͘͠͠ɻ u := v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ߹̍ɽ ͷͱ͖ ΛదʹܾΊɺ ͱ͓͘ɻ z[v] v z[v] = 0 ͷྵΛ ", 28
ূ໌ u, u ! v (t ! 1) u :=
v "e (t)'1(t < 0) u := v "e 1t'1(t < 0) ΛదʹܾΊΔ͜ͱͰ ͜ΕΒ͕༏ղɾྼղͱͳΔɻ ཱɻ ( t ) = 1t 1 p 1 log(1 + 1 1 e 1(p 1)t ) ", 29
ূ໌ Y. Fukao, Y. Morita, H. Ninomiya(2004) Λࢀߟʹ ͕ͨͬͯ͠ɺ༏ղɾྼղͷํ๏ʹΑΓɺ ui(
x, i ) := u (| x | , i ) {ui }i2N ͱ͓͖ɺ ui ! u (i ! 1) ͕ࣔͤΔɻ ΞείϦɾΞϧπΣϥͷఆཧΛ༻͍ͯ Λߏ͢Δɻ ղͷྻ t < 0 Ͱఆٛ͞Εͨղ u ͕ଘࡏ͢Δɻ ͜͜Ͱ 30
ূ໌ v u u ! 0 (t ! 1) ۭؒ1࣍ݩͷͰྵ͕ඇ૿ՃͰ͋Δ͜ͱɺ
͕ࣔͤͨɻ ߹2. z[v] = k(k 2 N) ͜ͷ߹ɺ z[v] = 0 v Λ ͱͳΔղͷͭͳ͗߹Θͤ ͱͯ͠ߟ͑Δ͜ͱͰɺz[v] = 0 ͷ߹ʹؼண͢Δɻ ূ໌ऴΘΓ ͕ෆ҆ఆͰ͋Δ͜ͱʢิ1ʣΑΓɺ v 31 ܭࢉʹΑΓ
ূ໌ C0(⌦) 2 S v 0 2 G u0 u
32
·ͱΊ ހঢ়࿈݁Ͱ͋Δɻ G ͜ͷͱ͖ɺ ͱ͢Δɻ 8 > < > :
ut = uxx + | u |p 1 u in ( 1, 1) ⇥ (0, T) u = 0 on @ { ( 1, 1) } ⇥ (0, T) u(x, 0) = u0(x) in [ 1, 1] G ʹ͓͍ͯހঢ়࿈͔݁ʁ X ࣌ؒେҬղͷू߹ N = 1, ⌦ = ( 1, 1) 33