Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
Search
kinosuke01
February 16, 2025
Programming
0
280
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
https://tech.pepabo.com/2025/02/13/gamers-frontend-component-test/
より
kinosuke01
February 16, 2025
Tweet
Share
More Decks by kinosuke01
See All by kinosuke01
AIを導⼊しても、 開発⽣産性は"爆増"していない なぜ?
kinosuke01
4
4.2k
長年続く手動E2Eテストを自動化で救いたい
kinosuke01
0
89
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
1.3k
カンファレンス登壇資料を毎日読む習慣
kinosuke01
0
200
Notionで作るWebサイト「MuuMuu Sites」の裏側
kinosuke01
0
2.4k
Other Decks in Programming
See All in Programming
モデル駆動設計をやってみよう Modeling Forum2025ワークショップ/Let’s Try Model-Driven Design
haru860
0
170
Module Harmony
petamoriken
2
500
乱雑なコードの整理から学ぶ設計の初歩
masuda220
PRO
32
14k
歴史から学ぶ「Why PHP?」 PHPを書く理由を改めて理解する / Learning from History: “Why PHP?” Rediscovering the Reasons for Writing PHP
seike460
PRO
0
160
Honoを技術選定したAI要件定義プラットフォームAcsimでの意思決定
codenote
0
250
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.1k
Reactive Thinking with Signals and the new Resource API
manfredsteyer
PRO
0
110
Querying Design System デザインシステムの意思決定を支える構造検索
ikumatadokoro
1
1.2k
All(?) About Point Sets
hole
0
200
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
1.1k
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
590
Rails Girls Sapporo 2ndの裏側―準備の日々から見えた、私が得たもの / SAPPORO ENGINEER BASE #11
lemonade_37
2
180
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
A better future with KSS
kneath
239
18k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Typedesign – Prime Four
hannesfritz
42
2.9k
Context Engineering - Making Every Token Count
addyosmani
9
410
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Experiences People Love
moore
142
24k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
1 ⽣成AIで加速するテスト実装 ロリポップ for Gamersの事例と⽣成AIエディタの活⽤ ホスティング事業部 kinosuke01 (⻄⽥貴之) 2025.02
⾃⼰紹介 2 • 名前: kinosuke01 (本名: ⻄⽥) • 所属: GMOペパボ
ホスティング事業部 • 職種: Webアプリケーションエンジニア • チームでわいわい仕事しています。 モノの構造を知ることが好きです。 Xでは⽇々学んだことをアウトプットしています。 ⾃⼰紹介
背景と課題 3 ロリポップ for Gamers を 2024年にリリース VPSをベースに「ゲームのマルチプレイが簡単にできる環境」を提供 背景と課題 (1)
背景と課題 4 • 急速なサービス⽴ち上げ • プロジェクト⽴ち上げから13営業⽇で初期リリース • フロントエンドテストの現状 • 単純なユニットテストのみ実装
• 不⾜していたテスト内容 • ユーザー操作(ボタンのクリックなど)で何が起こるか • APIリクエストの成功/失敗処理 • UIの更新状態 背景と課題 (2)
テスト戦略の再考 5 • コンポーネントテストへのシフト • メモリ上にコンポーネントをレンダリングし、イベントを発⽕することで、DOMにどの ような変化が発⽣したかをチェックするテスト • Testing Library
と Vitest を活⽤ • 重視すべきポイント • ユーザーのアクション検証 • API挙動のモックによるテスト • 画⾯表⽰のリアルタイムな確認 テスト戦略の再考
⽣成AIエディタの活⽤ 6 • ⽣成AIエディタを利⽤してテストコード⽣成を⾃動化 • 効率的にテストコードの拡充が可能に • 主な流れ • コンポーネントに
`data-testid` を付与 • 対象のコードと周辺情報(=コンテキスト)を提供 • プロンプトでテストコード⽣成を指⽰ • 補⾜ • この事例ではCursorを利⽤。 • おそらく、Github Copilotでも同じことができるはず..!! ⽣成AIエディタの活⽤
⽣成AIエディタ活⽤の具体プロセス 7 1. 前準備 • 前準備として data-testid(テストに⽤いるタグの識別⼦)を付与 • 以下のようなプロンプトで⽣成する ⽣成AIエディタ活⽤の具体プロセス
'@testing-library/react', 'vitest' を使⽤して、 コンポーネントのテストを書きたいです。 まずは xxx.tsx に data-testid を付与してください。
⽣成AIエディタ活⽤の具体プロセス 8 2. コンテキストの投⼊ • テスト対象となるコードと、 関連するコードを コンテキストとして追加する ⽣成AIエディタ活⽤の具体プロセス
⽣成AIエディタ活⽤の具体プロセス 9 3. プロンプトによる⽣成指⽰ • 以下のプロンプトを使ってテストコードを作成。 ⽣成AIエディタ活⽤の具体プロセス '@testing-library/react', 'vitest' を使⽤して、コンポーネントのテストを書いてくだ
さい。テストのファイルは xxx.test.tsx としてください。なお、hook は以下の例の ように、xxxApi のメソッドをモックするようにしてください。 // ここに例となるコードを記載 • 補⾜:例となるコードは直接プロンプトに書き込んだ⽅が、 意図したコードになりやすかった。
⽣成AIエディタ活⽤の具体プロセス 10 4. チューニング • ⽣成したテストケースが不⼗分だと感じるときもある。 • 以下のプロンプトを⽤いてチューニングする。 ⽣成AIエディタ活⽤の具体プロセス では、この出⼒を60点とします。60点とした時に100点とはどのようなものです
か? 100点にするために⾜りないものを列挙した後に、100点の答えを⽣成してく ださい。
成果と効果 11 迅速なテストコード⽣成 • ⼿直しがほとんど不要なコードが得られた • もりもりテストを⽣成できた 成果と効果
残された課題 12 • Cursorに与えるコンテキストを⼈⼒で選択している • これを⽣成AIがうまく拾えるようにしたい 残された課題
まとめ 13 • 課題:急速な開発によるテスト不⾜ • 対策:コンポーネントテストへのシフト • ⼿段:Cursorを活⽤したテストコード⾃動⽣成 • 成果:効率的なテスト構築と品質向上
• 展望:コンテキスト選択の⾃動化 まとめ
14 Thank you!