Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
Search
kinosuke01
February 16, 2025
Programming
0
300
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
https://tech.pepabo.com/2025/02/13/gamers-frontend-component-test/
より
kinosuke01
February 16, 2025
Tweet
Share
More Decks by kinosuke01
See All by kinosuke01
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
1.1k
AIを導⼊しても、 開発⽣産性は"爆増"していない なぜ?
kinosuke01
4
5.8k
長年続く手動E2Eテストを自動化で救いたい
kinosuke01
0
110
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
1.3k
カンファレンス登壇資料を毎日読む習慣
kinosuke01
0
230
Notionで作るWebサイト「MuuMuu Sites」の裏側
kinosuke01
0
2.5k
Other Decks in Programming
See All in Programming
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
180
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1k
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
230
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
310
CSC307 Lecture 01
javiergs
PRO
0
650
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2k
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
.NET Conf 2025 の興味のあるセッ ションを復習した / dotnet conf 2025 quick recap for backend engineer
tomohisa
0
110
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
250
Featured
See All Featured
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
140
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
How to Talk to Developers About Accessibility
jct
1
94
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
The SEO Collaboration Effect
kristinabergwall1
0
320
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
Paper Plane (Part 1)
katiecoart
PRO
0
2.8k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
110
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
230
Transcript
1 ⽣成AIで加速するテスト実装 ロリポップ for Gamersの事例と⽣成AIエディタの活⽤ ホスティング事業部 kinosuke01 (⻄⽥貴之) 2025.02
⾃⼰紹介 2 • 名前: kinosuke01 (本名: ⻄⽥) • 所属: GMOペパボ
ホスティング事業部 • 職種: Webアプリケーションエンジニア • チームでわいわい仕事しています。 モノの構造を知ることが好きです。 Xでは⽇々学んだことをアウトプットしています。 ⾃⼰紹介
背景と課題 3 ロリポップ for Gamers を 2024年にリリース VPSをベースに「ゲームのマルチプレイが簡単にできる環境」を提供 背景と課題 (1)
背景と課題 4 • 急速なサービス⽴ち上げ • プロジェクト⽴ち上げから13営業⽇で初期リリース • フロントエンドテストの現状 • 単純なユニットテストのみ実装
• 不⾜していたテスト内容 • ユーザー操作(ボタンのクリックなど)で何が起こるか • APIリクエストの成功/失敗処理 • UIの更新状態 背景と課題 (2)
テスト戦略の再考 5 • コンポーネントテストへのシフト • メモリ上にコンポーネントをレンダリングし、イベントを発⽕することで、DOMにどの ような変化が発⽣したかをチェックするテスト • Testing Library
と Vitest を活⽤ • 重視すべきポイント • ユーザーのアクション検証 • API挙動のモックによるテスト • 画⾯表⽰のリアルタイムな確認 テスト戦略の再考
⽣成AIエディタの活⽤ 6 • ⽣成AIエディタを利⽤してテストコード⽣成を⾃動化 • 効率的にテストコードの拡充が可能に • 主な流れ • コンポーネントに
`data-testid` を付与 • 対象のコードと周辺情報(=コンテキスト)を提供 • プロンプトでテストコード⽣成を指⽰ • 補⾜ • この事例ではCursorを利⽤。 • おそらく、Github Copilotでも同じことができるはず..!! ⽣成AIエディタの活⽤
⽣成AIエディタ活⽤の具体プロセス 7 1. 前準備 • 前準備として data-testid(テストに⽤いるタグの識別⼦)を付与 • 以下のようなプロンプトで⽣成する ⽣成AIエディタ活⽤の具体プロセス
'@testing-library/react', 'vitest' を使⽤して、 コンポーネントのテストを書きたいです。 まずは xxx.tsx に data-testid を付与してください。
⽣成AIエディタ活⽤の具体プロセス 8 2. コンテキストの投⼊ • テスト対象となるコードと、 関連するコードを コンテキストとして追加する ⽣成AIエディタ活⽤の具体プロセス
⽣成AIエディタ活⽤の具体プロセス 9 3. プロンプトによる⽣成指⽰ • 以下のプロンプトを使ってテストコードを作成。 ⽣成AIエディタ活⽤の具体プロセス '@testing-library/react', 'vitest' を使⽤して、コンポーネントのテストを書いてくだ
さい。テストのファイルは xxx.test.tsx としてください。なお、hook は以下の例の ように、xxxApi のメソッドをモックするようにしてください。 // ここに例となるコードを記載 • 補⾜:例となるコードは直接プロンプトに書き込んだ⽅が、 意図したコードになりやすかった。
⽣成AIエディタ活⽤の具体プロセス 10 4. チューニング • ⽣成したテストケースが不⼗分だと感じるときもある。 • 以下のプロンプトを⽤いてチューニングする。 ⽣成AIエディタ活⽤の具体プロセス では、この出⼒を60点とします。60点とした時に100点とはどのようなものです
か? 100点にするために⾜りないものを列挙した後に、100点の答えを⽣成してく ださい。
成果と効果 11 迅速なテストコード⽣成 • ⼿直しがほとんど不要なコードが得られた • もりもりテストを⽣成できた 成果と効果
残された課題 12 • Cursorに与えるコンテキストを⼈⼒で選択している • これを⽣成AIがうまく拾えるようにしたい 残された課題
まとめ 13 • 課題:急速な開発によるテスト不⾜ • 対策:コンポーネントテストへのシフト • ⼿段:Cursorを活⽤したテストコード⾃動⽣成 • 成果:効率的なテスト構築と品質向上
• 展望:コンテキスト選択の⾃動化 まとめ
14 Thank you!